Method for Reconstructing Velocity Field Images of the Internal Structures of Bridges Based on Group Sparsity
Abstract
:1. Introduction
2. Related Work
3. Construction of Travel-Time Tomography Model
4. Methods for Solving the Tomographic Imaging Model of Internal Structural Velocity Field in Bridges
4.1. Simultaneous Algebraic Reconstruction Technique
4.2. Group Sparse Modeling
4.3. SART Algorithm Based on Group Sparsity Regularization
5. Algorithm Verification and Result Evaluation
5.1. Algorithm Verification
5.2. Field Experiment
5.3. Evaluation of Reconstruction Effects
6. Conclusions
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karastathis, V.K.; Karmis, P.N.; Drakatos, G.; Stavrakakis, G. Assessment of the dynamic properties of highly saturated concrete using one-sided acoustic tomography, Application in the Marathon Dam. Constr. Build. Mater. 2002, 16, 261–269. [Google Scholar] [CrossRef]
- Ravi Kumar, N.S.; Barkavi, T.; Natarajan, C. Structural health monitoring: Detection of concrete flaws using ultrasonic pulse velocity. J. Build. Pathol. Rehabil. 2018, 3, 6. [Google Scholar] [CrossRef]
- Tatarinov, A.; Rumjancevs, A.; Mironovs, V. Assessment of cracks in pre-stressed concrete railway sleepers by ultrasonic testing. Procedia Comput. Sci. 2019, 149, 324–330. [Google Scholar] [CrossRef]
- Zielińska, M.; Rucka, M. Detection of debonding in reinforced concrete beams using ultrasonic transmission tomography and hybrid ray tracing technique. Constr. Build. Mater. 2020, 262, 120104. [Google Scholar] [CrossRef]
- Thiele, M.; Pirskawetz, S. Analysis of damage evolution in concrete under fatigue loading by acoustic emission and ultrasonic testing. Materials 2022, 15, 341. [Google Scholar] [CrossRef]
- Donda, D.; Latosh, F.; Rahman, M.A.; Bagchi, A. Detection of subsurface defects in concrete slabs using ground penetrating radar. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XV; SPIE: Bellingham, WA, USA, 2021; Volume 11592, pp. 48–56. [Google Scholar]
- Singh, S.K.; Narang, N.; Singh, D. Development of a novel approach to detect damage in concrete structures with millimeter wave radar assessment system. Rev. Sci. Instrum. 2021, 92, 044710. [Google Scholar] [CrossRef]
- Ma, Y.; Elseifi, M.A.; Dhakal, N.; Bashar, M.Z.; Zhang, Z. Non-destructive detection of asphalt concrete stripping damage using ground penetrating radar. Transp. Res. Rec. 2021, 2675, 938–947. [Google Scholar] [CrossRef]
- Jin, H.; Zou, L.L. Detection of hidden disease of concrete bridge based on infrared thermal imaging. J. Phys. Conf. Ser. 2021, 1748, 042041. [Google Scholar]
- Goffin, B.; Banthia, N.; Yonemitsu, N. Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete. Constr. Build. Mater. 2020, 263, 120162. [Google Scholar] [CrossRef]
- Keo, S.A.; Szymanik, B.; Le Roy, C.; Brachelet, F.; Defer, D. Defect detection in CFRP concrete reinforcement using the microwave infrared thermography (MIRT) method—A Numerical Modeling and Experimental Approach. Appl. Sci. 2023, 13, 8393. [Google Scholar] [CrossRef]
- Yaacob, M.L.M.; Idris, N.H.; Zainuddin, K.; Dollah, R.; Yusof, N.M.; Abd Rahaman, N.; Ahmad, S.; Hamid, N.A.; Mhapo, A.M. Bridge Pillar Defect Detection using Close Range Thermography Imagery. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 599–606. [Google Scholar]
- Scherr, J.F.; Grosse, C.U. Delamination detection on a concrete bridge deck using impact echo scanning. Struct. Concr. 2021, 22, 806–812. [Google Scholar] [CrossRef]
- Liu, Y.L.; Liu, Z.; Lai, S.K.; Luo, L.Z.; Dai, J.G. Debonding detection in the grouted joints of precast concrete shear walls using impact-echo method. J. Nondestruct. Eval. 2021, 40, 50. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, G.; Du, L. Application of Impact Elastic Wave Method in Quality Inspection of Concrete Lining. J. Phys. Conf. Ser. 2023, 2651, 012079. [Google Scholar]
- Hongyan, L.; Zhonglin, W. A modified algebraic reconstruction algorithm for sparse projection. Ann. Transl. Med. 2021, 9, 1422. [Google Scholar]
- Ghanbari, S.; Woods, J.C.; Lucas, S.M. Semi-automatic BPT for image retrieval. In Proceedings of the 2009 Seventh International Workshop on Content-Based Multimedia Indexing, Chania, Greece, 3–5 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 33–37. [Google Scholar]
- Agarwal, C.; Mhatre, A.; Patra, S.; Chaudhury, S.; Goswami, A. Algebraic reconstruction technique combined with Monte Carlo method for weight matrix calculation in gamma ray transmission tomography. SN Appl. Sci. 2019, 1, 1157. [Google Scholar] [CrossRef]
- Yan, M. Convergence analysis of SART: Optimization and statistics. Int. J. Comput. Math. 2013, 90, 30–47. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Liu, Y.; Qin, J. Theory and Algorithm of Structural Sparse Optimization Model. Sci. China Math. 2024, 54, 1045–1070. [Google Scholar]
- Cai, L.; Feng, X.; Yu, H. Reinforcement Learning with Sparse Representation via Sparse Overlapping Group Lasso. J. East China Univ. Sci. Technol. 2024. [Google Scholar]
- Li, X.; Fu, H.; Song, B. Fluorescence Diffusion Optical Tomography Reconstruction Based on Group Sparsity Regularization. Prog. Laser Optoelectron. Technol. 2021, 58, 251–257. [Google Scholar]
- Peng, B.; Zhou, J.; Zhang, Y. Few-view CT reconstruction with group-sparsity regularization. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3101. [Google Scholar]
- Zhang, Q.; Zhang, J.; Lu, S.; Liu, Y.; Liu, L.; Wang, Y.; Cao, M. Multi-Resolution Feature Extraction and Fusion for Traditional Village Landscape Analysis in Remote Sensing Imagery. Trait. Du Signal 2023, 40, 1259. [Google Scholar] [CrossRef]
- Li, J.; Ren, J.; Fan, X.; Zhou, P.; Pu, Y.; Zhang, F. Estimation of unfrozen water content in frozen soils based on data interpolation and constrained monotonic neural network. Cold Reg. Sci. Technol. 2024, 218, 104094. [Google Scholar] [CrossRef]
Reconstruction Algorithm | ART | SART | SART-GSR |
RMSE (m/s) | 209.28 | 171.24 | 89.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, J.; Guo, C.; Wu, H.; Li, C.; Liu, R.; Wei, L. Method for Reconstructing Velocity Field Images of the Internal Structures of Bridges Based on Group Sparsity. Electronics 2024, 13, 4574. https://doi.org/10.3390/electronics13224574
Li J, Li J, Guo C, Wu H, Li C, Liu R, Wei L. Method for Reconstructing Velocity Field Images of the Internal Structures of Bridges Based on Group Sparsity. Electronics. 2024; 13(22):4574. https://doi.org/10.3390/electronics13224574
Chicago/Turabian StyleLi, Jian, Jin Li, Chenli Guo, Hongtao Wu, Chuankun Li, Rui Liu, and Lujun Wei. 2024. "Method for Reconstructing Velocity Field Images of the Internal Structures of Bridges Based on Group Sparsity" Electronics 13, no. 22: 4574. https://doi.org/10.3390/electronics13224574
APA StyleLi, J., Li, J., Guo, C., Wu, H., Li, C., Liu, R., & Wei, L. (2024). Method for Reconstructing Velocity Field Images of the Internal Structures of Bridges Based on Group Sparsity. Electronics, 13(22), 4574. https://doi.org/10.3390/electronics13224574