Design of a Cyber-Physical System-of-Systems Architecture for Elderly Care at Home
Abstract
:1. Introduction
1.1. Contributions
1.2. Organisation of the Paper
2. Related Work
3. Shared State Representation
3.1. CORTEX and the Deep State Representation (DSR)
3.2. Sharing Information Between DSRs
- Both dsr_bridge agents maintain the DSR as a shared pointer, which allows them to listen for changes in the network and act as a ROS node. Depending on the tasks that have been set at a high level (e.g., person monitoring), the dsr_bridge activates certain communication topics. These topics are linked to nodes in the DSR. In the example of monitoring the person’s state, any information that is updated in either DSR about the person node (attributes such as heart rate and respiration rate (captured by the IoT system) or the emotional state (whether the robot has spoken to the person and collected this information)) is transferred between the two DSRs. Currently, this mapping between tasks and topics is set manually at design time.
- When a modification to be transferred is detected in the DSR, it is published using ROS topics (network nodes and arcs). A ‘source’ attribute is added to the message that determines which system publishes the change (the robot or IoT, in our case). This avoids auto-listening to published messages.
- When one of the agents publishes a change, the other agent reads it and updates its DSR with the knowledge included in the message (node name, type, attributes, link). The change may involve adding or deleting a node or arc.
- If the published message involves a modification to the DSR (i.e., updating an attribute of an existing arc or node), the receiving agent will carry out the relevant checks (i.e., to ensure that the node or link whose attribute is to be modified exists).
4. Experimental Evaluation
4.1. Experimental Setting
4.1.1. The Morphia Robot
4.1.2. The IoT System
4.2. Enhanced Robot Navigation
4.3. Care for Fallen Persons
4.4. Comparison with Other IoT Systems
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruces, A.; Jerez, A.; Bandera, J.P.; Bandera, A. Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey. Appl. Sci. 2024, 14, 5287. [Google Scholar] [CrossRef]
- WHO. Active Ageing: A Policy Framework. Aging Male 2002, 5, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Calderita, L.V.; Vega, A.; Barroso-Ramírez, S.; Bustos, P.; Núñez, P. Designing a Cyber-Physical System for Ambient Assisted Living: A Use-Case Analysis for Social Robot Navigation in Caregiving Centers. Sensors 2020, 20, 4005. [Google Scholar] [CrossRef] [PubMed]
- Sanz, R.; Bermejo, J.; Rodriguez, M.; Aguado, E. The role of knowledge in cyber-physical systems of systems. TASK Q. 2021, 25, 355–373. [Google Scholar] [CrossRef]
- Bustos, P.; Manso, L.; Bandera, A.; Bandera, J.; García-Varea, I.; Martínez-Gómez, J. The CORTEX cognitive robotics architecture: Use cases. Cogn. Syst. Res. 2019, 55, 107–123. [Google Scholar] [CrossRef]
- Marfil, R.; Romero-Garces, A.; Bandera, J.; Manso, L.; Calderita, L.; Bustos, P.; Bandera, A.; Garcia-Polo, J.; Fernandez, F.; Voilmy, D. Perceptions or Actions? Grounding How Agents Interact Within a Software Architecture for Cognitive Robotics. Cogn. Comput. 2020, 12, 479–497. [Google Scholar] [CrossRef]
- Nielsen, C.B.; Larsen, P.G.; Fitzgerald, J.; Woodcock, J.; Peleska, J. Systems of Systems Engineering: Basic Concepts, Model-Based Techniques, and Research Directions. ACM Comput. Surv. 2015, 48, 1–41. [Google Scholar] [CrossRef]
- Kopetz, H.; Bondavalli, A.; Brancati, F.; Frömel, B.; Höftberger, O.; Iacob, S. Emergence in Cyber-Physical Systems-of-Systems (CPSoSs). In Cyber-Physical Systems of Systems: Foundations—A Conceptual Model and Some Derivations: The AMADEOS Legacy; Bondavalli, A., Bouchenak, S., Kopetz, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–96. [Google Scholar] [CrossRef]
- Venancio-Teixeira, J.; da Silva Hounsell, M.; Wildgrube-Bertol, D. How CPS and Autonomous Robots are Integrated to other I4.0 Technologies: A systematic literature review. Prod. Manuf. Res. 2023, 11, 2279715. [Google Scholar] [CrossRef]
- Bocicor, M.I.; Frau, D.C.; Draghici, I.C.; Goga, N.; Molnar, A.J.; Pérez, R.V.; Vasilateanu, A. Cyber-physical system for assisted living and home monitoring. In Proceedings of the 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 7–9 September 2017; pp. 487–493. [Google Scholar] [CrossRef]
- De Venuto, D.; Annese, V.F.; Sangiovanni-Vincentelli, A.L. The ultimate IoT application: A cyber-physical system for ambient assisted living. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2042–2045. [Google Scholar] [CrossRef]
- Coradeschi, S.; Cesta, A.; Cortellessa, G.; Coraci, L.; Galindo, C.; Gonzalez, J.; Karlsson, L.; Forsberg, A.; Frennert, S.; Furfari, F.; et al. GiraffPlus: A System for Monitoring Activities and Physiological Parameters and Promoting Social Interaction for Elderly. In Human-Computer Systems Interaction: Backgrounds and Applications 3; Hippe, Z.S., Kulikowski, J.L., Mroczek, T., Wtorek, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 261–271. [Google Scholar] [CrossRef]
- Wengefeld, T.; Schuetz, B.; Girdziunaite, G.; Scheidig, A.; Gross, H.M. The MORPHIA Project: First Results of a Long-Term User Study in an Elderly Care Scenario from Robotic Point of View. In Proceedings of the ISR Europe 2022, 54th International Symposium on Robotics, Munich, Germany, 20–21 June 2022; pp. 1–8. [Google Scholar]
- Do, H.M.; Pham, M.; Sheng, W.; Yang, D.; Liu, M. RiSH: A robot-integrated smart home for elderly care. Robot. Auton. Syst. 2018, 101, 74–92. [Google Scholar] [CrossRef]
- Mojarad, R.; Chibani, A.; Attal, F.; Khodabandelou, G.; Amirat, Y. A hybrid and context-aware framework for normal and abnormal human behavior recognition. Soft Comput. 2023, 28, 4821–4845. [Google Scholar] [CrossRef]
- Lin, H.Z.; Chen, H.H.; Choophutthakan, K.; Li, C.H.G. Autonomous Mobile Robot as a Cyber-Physical System Featuring Networked Deep Learning and Control. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Sapporo, Japan, 11–15 July 2022; pp. 268–274. [Google Scholar] [CrossRef]
- Mazumder, A.; Sahed, M.; Tasneem, Z.; Das, P.; Badal, F.; Ali, M.; Ahamed, M.; Abhi, S.; Sarker, S.; Das, S.; et al. Towards next generation digital twin in robotics: Trends, scopes, challenges, and future. Heliyon 2023, 9, e13359. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Blanche, J.; Zaki, O.; Roe, J.; Kong, L.; Harper, S.; Robu, V.; Lim, T.; Flynn, D. Symbiotic System of Systems Design for Safe and Resilient Autonomous Robotics in Offshore Wind Farms. IEEE Access 2021, 9, 141421–141452. [Google Scholar] [CrossRef]
- Ben Halima, R.; Hachicha, M.; Jemal, A.; Hadj Kacem, A. MAPE-K patterns for self-adaptation in cyber-physical systems. J. Supercomput. 2022, 79, 4917–4943. [Google Scholar] [CrossRef]
- Romero-Garcés, A.; Hidalgo-Paniagua, A.; González-García, M.; Bandera, A. On Managing Knowledge for MAPE-K Loops in Self-Adaptive Robotics Using a Graph-Based Runtime Model. Appl. Sci. 2022, 12, 8583. [Google Scholar] [CrossRef]
- Gaber, M.M. Scientific Data Mining and Knowledge Discovery: Principles and Foundations, 1st ed.; Springer Publishing Company, Incorporated: New York, NY, USA, 2009. [Google Scholar]
- Zaraté, P.; Liu, S. A new trend for knowledge-based decision support systems design. Int. J. Inf. Decis. Sci. 2016, 8, 305–324. [Google Scholar] [CrossRef]
- Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the wild. Sci. Robot. 2022, 7, eabm6074. [Google Scholar] [CrossRef]
- Jerez, A.; Iglesias, A.; Pérez-Lorenzo, J.; Tudela, A.; Cruces, A.; Bandera, J. An User-Centered Evaluation of Two Socially Assistive Robots Integrated in a Retirement Home. Int. J. Soc. Robot. 2024, 1–21. [Google Scholar] [CrossRef]
- Yang, L.; Kang, B.; Huang, Z.; Xu, X.; Feng, J.; Zhao, H. Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 10371–10381. [Google Scholar] [CrossRef]
- Macenski, S.; Soragna, A.; Carroll, M.; Ge, Z. Impact of ROS 2 Node Composition in Robotic Systems. arXiv 2023, arXiv:abs/2305.09933. [Google Scholar] [CrossRef]
- Macenski, S.; Martín, F.; White, R.; Clavero, J.G. The Marathon 2: A Navigation System. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 2718–2725. [Google Scholar] [CrossRef]
- Iglesias, A.; Viciana, R.; Pérez-Lorenzo, J.M.; Ting, K.L.H.; Tudela, A.; Marfil, R.; Qbilat, M.; Hurtado, A.; Jerez, A.; Bandera, J.P. The Town Crier: A Use-Case Design and Implementation for a Socially Assistive Robot in Retirement Homes. Robotics 2024, 13, 61. [Google Scholar] [CrossRef]
- Popoola, O.; Rodrigues, M.; Marchang, J.; Shenfield, A.; Ikpehai, A.; Popoola, J. A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: Problems, challenges and solutions. Blockchain Res. Appl. 2024, 5, 100178. [Google Scholar] [CrossRef]
- Gil, M.; Albert, M.; Fons, J.; Pelechano, V. Engineering human-in-the-loop interactions in cyber-physical systems. Inf. Softw. Technol. 2020, 126, 106349. [Google Scholar] [CrossRef]
- Tehrani, B.M.; Wang, J.; Wang, C. Review of Human-in-the-Loop Cyber-Physical Systems (HiLCPS): The Current Status from Human Perspective. In Computing in Civil Engineering 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 470–478. [Google Scholar] [CrossRef]
- Calinescu, R.; Cámara, J.; Paterson, C. Socio-Cyber-Physical Systems: Models, Opportunities, Open Challenges. In Proceedings of the 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), Montreal, QC, Canada, 28 May 2019; pp. 2–6. [Google Scholar] [CrossRef]
Person ID | (Perception) I Can Hear What the Robot Says at All Times | (Perception) I Can See What the Robot Shows on the Screen at All Times | (Operation) I Was Able to Interact with the Robot Through the Screen Without Any Problems | (Understanding) I Understood the Robot at All Times |
---|---|---|---|---|
1 | 4 | 5 | 3 | 4 |
2 | 5 | 5 | 3 | 5 |
3 | 5 | 3 | 2 | 4 |
4 | 5 | 5 | 2 | 5 |
5 | 5 | 5 | 2 | 5 |
6 | 5 | 5 | 5 | 5 |
7 | 3 | 3 | – | 1 |
8 | 4 | – | – | 2 |
Feature | Home Assistant | Node-RED | Our Proposal |
---|---|---|---|
Graphical interface | YES | NO | NO |
Support for multiple devices | YES | YES | YES |
Automation by visual flows (drag-and-drop) | NO | YES | NO |
YAML or GUI configuration | YES | NO | NO |
Connectivity with external services (APIs) | YES | YES | YES |
Home automation-oriented | YES | NO | YES |
Developer-oriented | NO | YES | YES |
Scalability for complex integration | YES | YES | YES |
Advanced automation between services and protocols | NO | YES | YES |
Support for various communication protocols (Zigbee, Z-Wave, MQTT) | YES | NO | YES |
Local server installation | YES | YES | YES |
Open-source code | YES | YES | YES |
Communication between systems hosted on different local servers (robot–environment) | NO | NO | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeas, J.; Tudela, A.; Pons, Ó.; Bandera, J.P.; Bandera, A. Design of a Cyber-Physical System-of-Systems Architecture for Elderly Care at Home. Electronics 2024, 13, 4583. https://doi.org/10.3390/electronics13234583
Galeas J, Tudela A, Pons Ó, Bandera JP, Bandera A. Design of a Cyber-Physical System-of-Systems Architecture for Elderly Care at Home. Electronics. 2024; 13(23):4583. https://doi.org/10.3390/electronics13234583
Chicago/Turabian StyleGaleas, José, Alberto Tudela, Óscar Pons, Juan Pedro Bandera, and Antonio Bandera. 2024. "Design of a Cyber-Physical System-of-Systems Architecture for Elderly Care at Home" Electronics 13, no. 23: 4583. https://doi.org/10.3390/electronics13234583
APA StyleGaleas, J., Tudela, A., Pons, Ó., Bandera, J. P., & Bandera, A. (2024). Design of a Cyber-Physical System-of-Systems Architecture for Elderly Care at Home. Electronics, 13(23), 4583. https://doi.org/10.3390/electronics13234583