Simple and Effective Control System for Active AC Ripple Filtering Circuits
Abstract
:1. Introduction
- A novel controller is proposed which is very simple, yet is robust with an all-stable internal feedback loop. The controller guarantees that it accurately emulates a larger capacitor within a wide bandwidth. The amount of capacitance amplification, as well as the voltage rating, are conveniently adjusted inside the controller. In advanced applications, these values can be changed after installation and even remotely, yielding a variable and adjustable capacitance.
- The proposed SdcCap is autonomous and plug-and-play in the sense that it is directly connected to the two terminals of interest without requiring any measurements external to it.
- The design approach and details of SdcCap are outlined, covering the two versions of SdcCap (buck/boost topology), the filter circuit design, and the controller design.
- The stability and robustness of the SdcCap have been analyzed. The SdcCap has high bandwidth, and it does not have stability and robustness issues.
- The detailed simulations and a sample of laboratory experimental results are presented that help to illustrate the performance of SdcCap in some exemplary applications.
2. Proposed Active Power Decoupling Controller
2.1. General Active AC Ripple Decoupling Circuits
2.2. Proposed Control Structure
2.3. Analysis of Proposed Controller for Buck Topology
2.3.1. Principle of Operation
2.3.2. Discussion on Stability
2.3.3. Discussion on Robustness
- The non-dc component of is k times the non-dc component of , i.e., . There is no robustness issue here because k is a known control parameter.
- The dc component of , i.e., , is off from the intended by as much as . For V smaller than , will be smaller than . Thus, must be sufficiently large to ensure that remains larger than in the buck topology and larger than zero in the boost topology to prevent the modulation index from going above unity in the buck topology and to remain in continuous conduction mode in the boost topology. For V larger than , will be larger than . Thus, must be sufficiently small to ensure that remains below the acceptable voltage limit of capacitor C in the buck topology and below in the boost topology.
2.3.4. Selection of and
3. Simulation Results
3.1. Single-Phase Rectifier Application
3.1.1. Buck Topology
3.1.2. Boost Topology
3.1.3. Boost Topology with Modified Control
3.2. Dc-Link Application in Two-Stage Single-Phase Inverter
3.3. Dc-Link Application in One-Stage Single-Phase Inverter
3.4. Output Capacitor in Flyback Converter Applications
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Harb, S.; Kutkut, N.; Batarseh, I.; Shen, Z.J. A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems. IEEE Trans. Power Electron. 2012, 28, 2711–2726. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Ge, B.; Balog, R.S. Capacitance, dc voltage utilizaton, and current stress: Comparison of double-line frequency ripple power decoupling for single-phase systems. IEEE Ind. Electron. Mag. 2017, 11, 37–49. [Google Scholar] [CrossRef]
- Vitorino, M.A.; Alves, L.F.S.; Wang, R.; de Rossiter Corrêa, M.B. Low-frequency power decoupling in single-phase applications: A comprehensive overview. IEEE Trans. Power Electron. 2016, 32, 2892–2912. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Khajehoddin, S.A.; Jain, P.; Bakhshai, A. A systematic approach to DC-bus control design in single-phase grid-connected renewable converters. IEEE Trans. Power Electron. 2012, 28, 3158–3166. [Google Scholar] [CrossRef]
- Khajehoddin, S.A.; Karimi-Ghartemani, M.; Jain, P.K.; Bakhshai, A. DC-bus design and control for a single-phase grid-connected renewable converter with a small energy storage component. IEEE Trans. Power Electron. 2012, 28, 3245–3254. [Google Scholar] [CrossRef]
- Wang, S.; Ruan, X.; Yao, K.; Tan, S.C.; Yang, Y.; Ye, Z. A flicker-free electrolytic capacitor-less AC–DC LED driver. IEEE Trans. Power Electron. 2011, 27, 4540–4548. [Google Scholar] [CrossRef]
- Yang, Y.; Ruan, X.; Zhang, L.; He, J.; Ye, Z. Feed-forward scheme for an electrolytic capacitor-less AC/DC LED driver to reduce output current ripple. IEEE Trans. Power Electron. 2013, 29, 5508–5517. [Google Scholar] [CrossRef]
- Chen, J.; Ge, Y.; Wang, K.; Hu, H.; He, Z.; Tian, Z.; Li, Y. Integrated regenerative braking energy utilization system for multi-substations in electrified railways. IEEE Trans. Ind. Electron. 2022, 70, 298–310. [Google Scholar] [CrossRef]
- Vogelsberger, M.A.; Wiesinger, T.; Ertl, H. Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters. IEEE Trans. Power Electron. 2010, 26, 493–503. [Google Scholar] [CrossRef]
- Wang, H.; Blaabjerg, F. Reliability of capacitors for DC-link applications in power electronic converters—An overview. IEEE Trans. Ind. Appl. 2014, 50, 3569–3578. [Google Scholar] [CrossRef]
- Chen, R.; Liu, Y.; Peng, F.Z. A solid state variable capacitor with minimum capacitor. IEEE Trans. Power Electron. 2016, 32, 5035–5044. [Google Scholar] [CrossRef]
- Li, H.; Zhang, K.; Zhao, H.; Fan, S.; Xiong, J. Active power decoupling for high-power single-phase PWM rectifiers. IEEE Trans. Power Electron. 2012, 28, 1308–1319. [Google Scholar] [CrossRef]
- Mutovkin, A.; Yuhimenko, V.; Schacham, S.; Kuperman, A. Simple and straightforward realisation of an electronic capacitor. Electron. Lett. 2019, 55, 220–222. [Google Scholar] [CrossRef]
- Lin, J.; Weiss, G. Plug-and-play control of the virtual infinite capacitor. IEEE Trans. Power Electron. 2019, 35, 1947–1956. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wang, H. On the practical design of a two-terminal active capacitor. IEEE Trans. Power Electron. 2019, 34, 10006–10020. [Google Scholar] [CrossRef]
- Wang, R.; Wang, F.; Boroyevich, D.; Burgos, R.; Lai, R.; Ning, P.; Rajashekara, K. A high power density single-phase PWM rectifier with active ripple energy storage. IEEE Trans. Power Electron. 2010, 26, 1430–1443. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Lee, D.C. Reducing the dc-link capacitance: A bridgeless PFC boost rectifier that reduces the second-order power ripple at the dc output. IEEE Ind. Appl. Mag. 2018, 24, 23–34. [Google Scholar] [CrossRef]
- Cai, W.; Liu, B.; Duan, S.; Jiang, L. An active low-frequency ripple control method based on the virtual capacitor concept for BIPV systems. IEEE Trans. Power Electron. 2013, 29, 1733–1745. [Google Scholar] [CrossRef]
- Serban, I.; Marinescu, C. Active power decoupling circuit for a single-phase battery energy storage system dedicated to autonomous microgrids. In Proceedings of the International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2024; IEEE: New York, NY, USA, 2010; pp. 2717–2722. [Google Scholar]
- Xing, K.; Guo, J.; Huang, W.; Peng, D.; Lee, F.C.; Borojevic, D. An active bus conditioner for a distributed power system. In Proceedings of the Power Electronics Specialists Conference, Charleston, SC, USA, 1 July 1999; IEEE: New York, NY, USA, 1999; Volume 2, pp. 895–900. [Google Scholar]
- Zhong, Q.C.; Ming, W.L.; Cao, X.; Krstic, M. Reduction of DC-bus voltage ripples and capacitors for single-phase PWM-controlled rectifiers. In Proceedings of the IECON Annual Conference on Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; IEEE: New York, NY, USA, 2012; pp. 708–713. [Google Scholar]
- Mellincovsky, M.; Yuhimenko, V.; Peretz, M.M.; Kuperman, A. Analysis and control of direct voltage regulated active DC-link capacitance reduction circuit. IEEE Trans. Power Electron. 2017, 33, 6318–6332. [Google Scholar] [CrossRef]
- Mutovkin, A.; Yuhimenko, V.; Mellincovsky, M.; Schacham, S.; Kuperman, A. Control of direct voltage regulated active DC-link capacitance reduction circuits to allow plug-and-play operation. IEEE Trans. Ind. Electron. 2018, 66, 6527–6537. [Google Scholar] [CrossRef]
- Mutovkin, A.; Mellincovsky, M.; Yuhimenko, V.; Schacham, S.; Kuperman, A. Conditions for Direct Applicability of Electronic Capacitors to Dual-Stage Grid-Connected Power Conversion Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1805–1814. [Google Scholar] [CrossRef]
- Mellincovsky, M.; Yuhimenko, V.; Peretz, M.M.; Kuperman, A. Low-frequency DC-link ripple elimination in power converters with reduced capacitance by multiresonant direct voltage regulation. IEEE Trans. Ind. Electron. 2016, 64, 2015–2023. [Google Scholar] [CrossRef]
- Mellincovsky, M.; Yuhimenko, V.; Zhong, Q.C.; Peretz, M.M.; Kuperman, A. Active DC link capacitance reduction in grid-connected power conversion systems by direct voltage regulation. IEEE Access 2018, 6, 18163–18173. [Google Scholar] [CrossRef]
- Lin, S.; Lin, J.; Weiss, G.; Zhao, X. Control of a virtual infinite capacitor used to stabilize the output voltage of a PFC. In Proceedings of the International Conference on the Science of Electrical Engineering (ICSEE), Eilat, Israel, 16–18 November 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Yona, G.; Weiss, G. The virtual infinite capacitor. Int. J. Control 2017, 90, 78–89. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H. A two-terminal active capacitor. IEEE Trans. Power Electron. 2017, 32, 5893–5896. [Google Scholar] [CrossRef]
- Aalbor University. The World’s First Two-Terminal Active Capacitor Technology. 2023. Available online: https://www.en.innovation.aau.dk/researchers/research-based-cases/the-world-s-first-two-terminal-active-capacitor-technology (accessed on 21 November 2024).
- Aalborg University. A Two-Terminal Active Capacitor-Invention from Aalborg University. Available online: https://www.youtube.com/watch?v=xjUPkmhKdHo (accessed on 26 November 2019).
- Elferich, R.; Lopez, T. Active Capacitor Circuit. U.S. Patent 9,258,858, 9 February 2016. [Google Scholar]
- Wang, H.; Chung, H.S.H.; Liu, W. Use of a series voltage compensator for reduction of the DC-link capacitance in a capacitor-supported system. IEEE Trans. Power Electron. 2013, 29, 1163–1175. [Google Scholar] [CrossRef]
- Liu, W.; Wang, K.; Chung, H.S.H.; Chuang, S.T.H. Modeling and design of series voltage compensator for reduction of DC-link capacitance in grid-tie solar inverter. IEEE Trans. Power Electron. 2014, 30, 2534–2548. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Grid voltage and freq. | & f | 120 V (rms) & 60 Hz |
Rectifier output dc voltage | 167 V | |
Rectifier power rating | 1 kW | |
Rectifier capacitor | 10 mF | |
Output voltage ripples | 6 V (pp) |
Parameter | Symbol | Value |
---|---|---|
Small capacitor | C | 0.795 mF |
Filter inductance | 20 H | |
Filter capacitance | 20 F | |
Switching frequency | 80 kHz | |
Control gain | k | 7 |
Nominal output voltage | 167 V | |
Nominal capacitor voltage | 300 V | |
Average CAF | K | 12.58 |
Parameter | Symbol | Value |
---|---|---|
Small capacitor | C | 1.7 mF |
Filter inductance | 20 H | |
Filter capacitance | 1.7 mF | |
Switching frequency | 80 kHz | |
Control gain | k | 7 |
Nominal output voltage | 167 V | |
Nominal capacitor voltage | 143 V | |
Average CAF | K | 6 |
Parameter | Symbol | Value |
---|---|---|
Grid voltage and freq. | & f | 120 V (rms) & 60 Hz |
PV voltage | 145 V | |
PV power | 2.5 kW | |
Dc-link nominal voltage | 400 V | |
Inverter power rating | 3.53 kVA | |
Dc-link capacitor | 750 F | |
Small capacitor in SdcCap | C | 37.5 F |
SdcCap filter inductance | 50 H | |
SdcCap filter capacitance | 25 F | |
SdcCap switching frequency | 80 kHz | |
SdcCap control gain | k | 10 |
Nominal SdcCap output voltage | 400 V | |
Nominal SdcCap capacitor voltage | 800 V | |
Average CAF | K | 20 |
Parameter | Symbol | Value |
---|---|---|
Grid voltage and freq. | & f | 120 V (rms) & 60 Hz |
PV voltage | 400 V | |
PV power | 6.0 kW | |
Dc-link nominal voltage | 400 V | |
Inverter power rating | 8.5 kVA | |
Dc-link capacitor | 1500 F | |
Small capacitor in SdcCap | C | 75 F |
SdcCap filter inductance | 50 H | |
SdcCap filter capacitance | 50 F | |
SdcCap switching frequency | 80 kHz | |
SdcCap control gain | k | 10 |
Nominal SdcCap output voltage | 400 V | |
Nominal SdcCap capacitor voltage | 800 V | |
Average CAF | K | 20 |
Parameter | Symbol | Value |
---|---|---|
Grid voltage and freq. | & f | 100 V (peak) & 60 Hz |
Rated output voltage | 10 V | |
Rated power | 10 W | |
Output capacitor | 2000 F | |
Small capacitor in SdcCap/[8] | C | 200 F |
SdcCap filter inductance | 20 H | |
SdcCap filter capacitance | 20 F | |
SdcCap switching frequency | 100 kHz | |
SdcCap control gain | k | 5 |
Nominal SdcCap output voltage | 10 V | |
Nominal SdcCap capacitor voltage | 20 V | |
Average CAF | K | 10 |
Voltage compensator in [8] | PIv | |
Current compensator in [8] | PIi | |
Flyback compensator | PIf |
Parameter | Symbol | Value |
---|---|---|
Ac voltage and freq. | & f | 30 V (rms) & 60 Hz |
Rectifier output dc voltage | 35 V | |
Rectifier load | 50 | |
Rectifier capacitor | 400 F | |
Small capacitor in SdcCap | C | 25 F |
SdcCap filter inductance | 200 H | |
SdcCap filter capacitance | 20 F | |
SdcCap switching frequency | 20 kHz | |
SdcCap control gain | k | 7.14 |
Nominal SdcCap output voltage | 35 V | |
Nominal SdcCap capacitor voltage | 80 V | |
Average CAF | K | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.; Karimi-Ghartemani, M.; Iqbal, U. Simple and Effective Control System for Active AC Ripple Filtering Circuits. Electronics 2024, 13, 4614. https://doi.org/10.3390/electronics13234614
Sharma R, Karimi-Ghartemani M, Iqbal U. Simple and Effective Control System for Active AC Ripple Filtering Circuits. Electronics. 2024; 13(23):4614. https://doi.org/10.3390/electronics13234614
Chicago/Turabian StyleSharma, Roshan, Masoud Karimi-Ghartemani, and Umar Iqbal. 2024. "Simple and Effective Control System for Active AC Ripple Filtering Circuits" Electronics 13, no. 23: 4614. https://doi.org/10.3390/electronics13234614
APA StyleSharma, R., Karimi-Ghartemani, M., & Iqbal, U. (2024). Simple and Effective Control System for Active AC Ripple Filtering Circuits. Electronics, 13(23), 4614. https://doi.org/10.3390/electronics13234614