Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives
Abstract
:1. Introduction
2. Basic Concepts and Principles of MPC
3. Typical Applications of MPC
3.1. MPC for High-Power Converters
3.2. MPC for Industrial Drives
4. Key Application Issues for MPC
4.1. Optimization and Elimination of Weighting Factors
4.2. Improvement of Steady-State Control Performance
4.3. Robustness Improvement
5. MPC Research Priorities and Trends
- (1)
- The future trend is to combine MPC with intelligent algorithms such as machine learning and advanced optimization algorithms to achieve intelligence and adaptive control. The above-mentioned combined research can further enhance the adaptability and robustness to cope with complex and ever-changing working environments.
- (2)
- In practical applications, power converters and motor control systems often have to satisfy several performance indicators simultaneously (such as energy efficiency, response time, stability, etc.). Therefore, an important research trend is the design and implementation of multi-objective optimization algorithms to achieve a balance between multiple performance indicators. The optimization problems for 2–3 control objectives and corresponding weighting factors have been basically addressed. However, the optimization problems for more control objectives, as well as issues related to tuning and computational burden, are still under investigation,
- (3)
- In practical applications, power converters and motor control systems have high real-time and reliability requirements. More attention needs to be paid to the accuracy, real-time performance and robustness of the model. On this basis, efforts should be made to improve the real-time responsiveness of the MPC algorithm, reduce computational delays, and realize stable operation of the system.
- (4)
- The combination of MPC and optimized pulse modulation should be explored. Pulse modulation is an excellent solution for low-power electronics applications with low switching frequencies, but there is a problem of slow dynamic response. The combination of MPC and optimized pulse modulation can present excellent dynamic and steady-state performance, but the implementation is relatively complex. In addition, it is necessary to calculate and store the optimized pulse modulation angle in advance, and to develop a fully online MPC with excellent steady-state performance to optimize pulse modulation while maintaining fast dynamic response.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lim, G.C.; Shim, J.; Ha, J.I. Review of Electric Drive Techniques: Power Enhancement and Drive Intelligence. IEEJ J. Ind. Appl. 2024, 13, 1–7. [Google Scholar] [CrossRef]
- Venugopal, C.; Bhuvaneswari, T.; Immanuel, S. Analysis of 12 pulse three- phase to three- phase cycloconverter drive for induction motor load. J. Eng. Res. 2023, 11, 100018. [Google Scholar] [CrossRef]
- Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model predictive control for power converters and drives: Advances and trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Rawlings, J.B.; Scokaert PO, M. Constrained model predictive control: Stability and optimality. Automatica 2000, 36, 789–814. [Google Scholar] [CrossRef]
- Camacho, E.F.; Bordons, C. Distributed model predictive control. Optim. Control Appl. Methods 2015, 36, 269–271. [Google Scholar] [CrossRef]
- Morari, M.; Lee, J.H. Model predictive control: Past, present and future. Comput. Chem. Eng. 1999, 23, 667–682. [Google Scholar] [CrossRef]
- Allgöewer, F. Nonlinear model predictive control. IEE Proc.-Control Theory Appl. 2005, 152, 257–258. [Google Scholar] [CrossRef]
- Alamir, A.; Bornard, G. Stability of a truncated infinite constrained receding horizon scheme: The general discrete nonlinear case. Automatica 1995, 31, 1353–1356. [Google Scholar] [CrossRef]
- Cannon, M.; Kouvaritakis, B.; Rakovic, S.V.; Cheng, Q.F. Stochastic tubes in model predictive control with probabilistic constraints. IEEE Trans. Autom. Control 2011, 56, 194–200. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Koh, B.K.; Lee, Y.I. A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors. IEEE Trans. Ind. Inform. 2018, 14, 1334–1346. [Google Scholar] [CrossRef]
- Kennel, R.; Linder, A. Predictive control of inverter supplied electrical drives. In Proceedings of the 2000 IEEE 31st Annual Power Electronics Specialists Conference, Galway, Ireland, 23–23 June 2000. [Google Scholar]
- Linder, A.; Kennel, R. Model Predictive Control for Electrical Drives. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany, 16 June 2005. [Google Scholar]
- Rodriguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortes, P.; Ammann, U. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 2007, 54, 495–503. [Google Scholar] [CrossRef]
- Kouro, S.; Correa, P.; Vargas, R.; Ammann, U.; Rodriguez, J. Model predictive control—A simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 2009, 56, 1826–1838. [Google Scholar] [CrossRef]
- Hadla, H.; Santos, F. Performance comparison of field-oriented control, direct torque control, and model-predictive control for SynRMs. Chin. J. Electr. Eng. 2022, 8, 24–37. [Google Scholar] [CrossRef]
- Stanojev, O.; Markovic, U.; Aristidou, P.; Hug, G.; Callaway, D.; Vrettos, E. MPC-based fast frequency control of voltage source converters in low-inertia power systems. IEEE Trans. Power Syst. 2020, 37, 3209–3220. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Liu, Z. Model predictive control methods for three-level sparse neutral point clamped inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 4355–4366. [Google Scholar] [CrossRef]
- Trabelsi, M.; Alquennah, A.N.; Vahedi, H. Review on single-DC-source multilevel inverters: Voltage balancing and control techniques. IEEE Open J. Ind. Electron. Soc. 2022, 3, 711–732. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Liu, Y.; Rodríguez, J. Low-cost multistep FCS-MPCC for PMSM drives using a DC link single current sensor. IEEE Trans. Power Electron. 2022, 37, 11034–11044. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Dang, C.; Xie, W. A desired voltage vector based MPTC strategy for PMSM with optimized switching pattern. IEEE Trans. Energy Convers. 2022, 37, 970–977. [Google Scholar] [CrossRef]
- Alamir, A. Practical nonlinear MPC algorithms for real-time applications. IFAC Proc. Vol. 2008, 41, 9–14. [Google Scholar]
- Mayne, D.Q.; Falugi, P. Stabilizing conditions for model predictive control. Int. J. Robust Nonlinear Control. 2019, 29, 894–903. [Google Scholar] [CrossRef]
- Cannon, M. Optimizing prediction dynamics for robust MPC. IEEE Trans. Autom. Control 2005, 50, 1892–1897. [Google Scholar] [CrossRef]
- Morari, M.; Maeder, U. Nonlinear offset-free model predictive control. Automatica 2012, 48, 2059–2067. [Google Scholar] [CrossRef]
- Soloperto, R.; Köehler, J.; Allgöewer, F. A nonlinear MPC scheme for output tracking without terminal ingredients. IEEE Trans. Autom. Control 2023, 68, 2368–2375. [Google Scholar] [CrossRef]
- Hang, J.; Wang, X.; Li, W.; Ding, S. Interturn Short-Circuit Fault Diagnosis and Fault-Tolerant Control of DTP-PMSM Based on Subspace Current Residuals. IEEE Trans. Power Electron. 2025, 40, 3395–3404. [Google Scholar] [CrossRef]
- Rong, Q.; Hu, P.; Yu, Y.; Wang, D.; Cao, Y.; Xin, H. Virtual External Perturbance-Based Impedance Measurement of Grid-Connected Converter. IEEE Trans. Ind. Electron. 2024. [Google Scholar] [CrossRef]
- Rong, Q.; Hu, P.; Wang, L.; Li, Y.; Yu, Y.; Wang, D.; Cao, Y. Asymmetric Sampling Disturbance-Based Universal Impedance Measurement Method for Converters. IEEE Trans. Power Electron. 2024, 39, 15457–15461. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Kong, X.; Zhou, J.; Shi, G.; Zang, J.; Wang, J. A Novel Multiple-Medium-AC-Port Power Electronic Transformer. IEEE Trans. Ind. Electron. 2024, 71, 6568–6578. [Google Scholar] [CrossRef]
- Deng, Y.; Song, W.; Yin, S.; Zhong, M.; Yang, K.; Feng, X. A Model Predictive Control Scheme Without Current Sensor of Dual Active Bridge DC–DC Converters: Improving Dynamic Performance and Reducing Hardware Cost. IEEE Trans. Transp. Electrif. 2023, 9, 2916–2928. [Google Scholar] [CrossRef]
- Ni, K.; Gan, C.; Peng, G.; Shi, H.; Hu, Y.; Chen, X. Power-Compensated Triple-Vector Model Predictive Direct Power Control Strategy for Nonredundant Fault-Tolerant Rectifiers. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3803–3814. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Ren, Q.; Chen, A.; Zhang, H.; Wang, W. Data-Driven Predictive Control Strategy to Improve Robust Performance for Three-Level Inverters with Reduced Common-Mode Voltage. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 3823–3834. [Google Scholar] [CrossRef]
- Qazi, S.; Mir, T.N.; Bhat, A.H.; Singh, B. Predictive algorithm for control of common mode voltage and switching frequency in direct matrix converter fed system. IEEE Trans. Ind. Electron. 2021, 69, 13316–13325. [Google Scholar] [CrossRef]
- Poblete, P.; Neira, S.; Aguilera, R.P.; Pereda, J.; Pou, J. Sequential Phase-Shifted Model Predictive Control for Modular Multilevel Converters. IEEE Trans. Energy Convers. 2021, 36, 2691–2702. [Google Scholar] [CrossRef]
- Garcés-Ruiz, A.; Riffo, S.; González-Castaño, C.; Restrepo, C. Model predictive control with stability guarantee for second-order DC/DC converters. IEEE Trans. Ind. Electron. 2024, 71, 5157–5165. [Google Scholar] [CrossRef]
- Kumar, G.S.; Bhimasingu, R. Optimal sector-based sequential model predictive control for current source rectifier. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5833–5843. [Google Scholar] [CrossRef]
- Li, Y.; Diao, F.; Zhao, Y. A hybrid multivector model predictive control for an inner-interleaved hybrid multilevel converter. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 3, 1046–1056. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Xing, X.; Zhang, C. A reduced switch hybrid multilevel converter with coordinated control method for current distortion mitigation and capacitor voltages balancing. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 593–606. [Google Scholar] [CrossRef]
- Gao, X.; Tian, W.; Pang, Y.; Kennel, R. Model-predictive control for modular multilevel converters operating at wide frequency range with a novel cost function. IEEE Trans. Ind. Electron. 2022, 69, 5569–5580. [Google Scholar] [CrossRef]
- Xu, W.; Dong, J.; Zou, J.; Liu, Y. Low-complexity multistep model predictive current control for linear induction machines. IEEE Trans. Power Electron. 2021, 36, 8388–8398. [Google Scholar] [CrossRef]
- Niu, L.; Yang, M.; Gui, X.; Xu, D. A comparative study of model predictive current control and FOC for PMSM. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014. [Google Scholar]
- Zhao, W.; Wang, H.; Tao, T.; Xu, D. Model predictive torque control of five-phase PMSM by using double virtual voltage vectors based on geometric principle. IEEE Trans. Transp. Electrif. 2021, 7, 2635–2644. [Google Scholar] [CrossRef]
- Ammar, A.; Kheldoun, A.; Metidji, B.; Talbi, B.; Ameid, T.; Azzoug, Y. An Experimental Assessment of Direct Torque Control and Model Predictive Control Methods for Induction Machine Drive. In Proceedings of the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria, 28–31 October 2018. [Google Scholar]
- Xie, H.; Kennel, R.; Wang, F.; Heldwein, M.L.; Rodriguez, J. Comparisons of FCS-MPC schemes and conventional PI-based methods for electrical drive systems. In Proceedings of the 2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Wuhan, China, 16–19 June 2023. [Google Scholar]
- Song, Z.; Cui, Y.; Wang, Y.; Liu, T. Flux-trajectory-optimization-based predictive flux control of permanent magnet synchronous machines. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4364–4375. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tran, H.N.; Nguyen, T.H.; Jeon, J.W. Recurrent neural network-based robust adaptive model predictive speed control for PMSM with parameter mismatch. IEEE Trans. Ind. Electron. 2023, 70, 6219–6228. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.; Liu, J.; Gao, S.; Xu, W. Performance improvement of model-predictive current control of permanent magnet synchronous motor drives. IEEE Trans. Ind. Appl. 2017, 53, 3683–3695. [Google Scholar] [CrossRef]
- Sun, X.; Wu, M.; Lei, G.; Guo, Y.; Zhu, J. An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. 2021, 68, 3782–3793. [Google Scholar] [CrossRef]
- Choi, K.; Kim, Y.; Kim, S.-K.; Kim, K.-S. Computationally efficient model predictive torque control of permanent magnet synchronous machines using numerical techniques. IEEE Trans. Control Syst. Technol. 2022, 30, 1774–1781. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, B. Double Vectors Model Predictive Torque Control Without Weighting Factor Based on Voltage Tracking Error. IEEE Trans. Power Electron. 2018, 33, 2368–2380. [Google Scholar] [CrossRef]
- Fu, R. Robust Model Predictive Flux Control of PMSM Drive Using a Compensated Stator Flux Predictor. IEEE Access 2021, 9, 136736–136743. [Google Scholar] [CrossRef]
- Zheng, Z.; Sun, D.; Wang, M.; Nian, H. A dual two-vector-based model predictive flux control with field-weakening operation for OW-PMSM drives. IEEE Trans. Power Electron. 2021, 36, 2191–2200. [Google Scholar] [CrossRef]
- Fuentes, E.; Kalise, D.; Rodriguez, J.; Kennel, R. Cascade-free predictive speed control for electrical drives. IEEE Trans. Ind. Electron. 2014, 61, 2176–2184. [Google Scholar] [CrossRef]
- Gong, C.; Hu, Y.; Ma, M.; Gao, J.; Shen, K. Novel analytical weighting factor tuning strategy based on state normalization and variable sensitivity balance for PMSM FCS-MPTC. IEEE/ASME Trans. Mechatron. 2020, 25, 1690–1694. [Google Scholar] [CrossRef]
- Geyer, T. Algebraic tuning guidelines for model predictive torque and flux control. IEEE Trans. Ind. Appl. 2018, 54, 4464–4475. [Google Scholar] [CrossRef]
- Muddineni, V.P.; Bonala, A.K.; Sandepudi, S.R. Enhanced weighting factor selection for predictive torque control of induction motor drive based on VIKOR method. IET Electr. Power Appl. 2016, 10, 877–888. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Li, Z.; Ke, D.; Du, J.; Garcia, C.; Rodriguez, J. Design of Model Predictive Control Weighting Factors for PMSM Using Gaussian Distribution-Based Particle Swarm Optimization. IEEE Trans. Ind. Electron. 2021, 69, 10935–10946. [Google Scholar] [CrossRef]
- Mohammadi, A.; Asadi, H.; Mohamed, S.; Nelson, K.; Nahavandi, S. Multiobjective and Interactive Genetic Algorithms for Weight Tuning of a Model Predictive Control-Based Motion Cueing Algorithm. IEEE Trans. Cybern. 2019, 49, 3471–3481. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Xie, H.; Dragicevic, T.; Wang, F.; Rodriguez, J.; Blaabjerg, F. Optimal cost function parameter design in predictive torque control (PTC) using artificial neural networks (ANN). IEEE Trans. Ind. Electron. 2021, 68, 7309–7319. [Google Scholar] [CrossRef]
- Yang, A.; Lu, Z. Multiscalar model-based predictive torque control without weighting factors and current sensors for induction motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5785–5797. [Google Scholar] [CrossRef]
- Wu, T.; Lyu, M.; Wu, X.; Yang, M.; Wang, Y.; Huang, S.; Ouyang, X.; Rodriguez, J. Enhanced model predictive control for PMSM based on reference voltage predictive model. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 5290–5300. [Google Scholar] [CrossRef]
- Rojas, C.A.; Rodriguez, J.; Villarroel, F.; Espinoza, J.R.; Silva, C.A.; Trincado, M. Predictive torque and flux control without weighting factors. IEEE Trans. Ind. Electron. 2013, 60, 681–690. [Google Scholar] [CrossRef]
- Norambuena, M.; Rodriguez, J.; Zhang, Z.; Garcia, C.; Kennel, R. A very simple strategy for high-quality performance of AC machines using model predictive control. IEEE Trans. Power Electron. 2019, 34, 794–800. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Yang, H.; Norambuena, M.; Rodriguez, J. Generalized sequential model predictive control of IM drives with field-weakening ability. IEEE Trans. Power Electron. 2019, 34, 8944–8955. [Google Scholar] [CrossRef]
- Wang, F.; Xie, H.; Chen, Q.; Davari, S.A.; Rodriguez, J.; Kennel, R. Parallel Predictive Torque Control for Induction Machines Without Weighting Factors. IEEE Trans. Power Electron. 2020, 35, 1779–1788. [Google Scholar] [CrossRef]
- Chen, J.; Qin, Y.; Bozorgi, A.M.; Farasat, M. Low Complexity Dual-Vector Model Predictive Current Control for Surface-Mounted Permanent Magnet Synchronous Motor Drives. EEE J. Emerg. Sel. Top. Power Electron. 2018, 54, 2655–2663. [Google Scholar] [CrossRef]
- Arahal, M.R.; Satué, M.G.; Barrero, F.; Colodro, F. Variable sampling period multi-phase predictive controller based on regions. Control Eng. Pract. 2024, 151, 1–7. [Google Scholar] [CrossRef]
- Xiao, M.; Shi, T.; Yan, Y.; Xia, C. Predictive Torque Control of Permanent Magnet Synchronous Motors Using Flux Vector. IEEE Trans. Ind. Appl. 2018, 54, 4437–4446. [Google Scholar] [CrossRef]
- Ma, C.; Yao, X.; Li, H.; De Belie, F. Setting up Reference Variants to Comply with Current Boundary Settings in Finite Set Model Predictive PMSM Control. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 5377–5389. [Google Scholar] [CrossRef]
- Arahal, M.R.; Barrero, F.; Durán, M.J.; Ortega, M.G.; Martín, C. Evolutionary gaps stator current control of multiphase drives balancing harmonic content. IEEE Trans. Ind. Electron. 2018, 71, 6886–6893. [Google Scholar] [CrossRef]
- Bhowate, A.; Aware, M.V.; Sharma, S. Speed Sensor-Less Predictive Torque Control for Five-Phase Induction Motor Drive Using Synthetic Voltage Vectors. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2698–2709. [Google Scholar] [CrossRef]
- Mamdouh, M.; Abido, M.A. Weighting Factor Elimination for Predictive Current Control of Asymmetric Six Phase Induction Motor. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
- Kowal, A.; Arahal, M.R.; Martin, C.; Barrero, F. Constraint satisfaction in current control of a five-phase drive with locally tuned predictive controllers. Energies 2019, 12, 2715. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T. Model predictive torque and flux control minimizing current distortions. IEEE Trans. Power Electron. 2019, 34, 2007–2012. [Google Scholar] [CrossRef]
- Arahal, M.R.; Kowal, A.; Barrero, F.; Castilla, M.D. Cost function optimization for multi-phase induction machines predictive control. Rev. Iberoam. Autom. Inf. Ind. 2019, 16, 48–55. [Google Scholar] [CrossRef]
- Zerdali, E.; Rivera, M.; Wheeler, P. A review on weighting factor design of finite control set model predictive control strategies for AC electric drives. IEEE Trans. Power Electron. 2024, 39, 9967–9981. [Google Scholar] [CrossRef]
- Arahal, M.R.; Barrero, F.; Durán, M.J.; Ortega, M.G.; Martín, C. Trade-offs analysis in predictive current control of multi-phase induction machines. Control Eng. Pract. 2018, 81, 105–113. [Google Scholar] [CrossRef]
- Guo, L.; Chen, M.; Li, Y.; Wang, P.; Jin, N.; Wu, J. Hybrid multi-vector modulated model predictive control strategy for voltage source inverters based on a new visualization analysis method. IEEE Trans. Transp. Electrif. 2023, 9, 8–12. [Google Scholar] [CrossRef]
- Ma, C.; Yao, X.; Li, H.; Vansompel, H.; Garcia, C.; Rodriguez, J.; Belie, F.D. A novel torque boundary-based model predictive torque control for PMSM without weighting factor. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4395–4406. [Google Scholar] [CrossRef]
- Xue, Y.; Meng, D.; Yin, S.; Han, W.; Yan, X.; Shu, Z.; Diao, L. Vector-based model predictive hysteresis current control for asynchronous motor. IEEE Trans. Ind. Electron. 2019, 66, 8703–8712. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H. Generalized two-vector-based model-predictive torque control of induction motor drives. IEEE Trans. Power Electron. 2015, 30, 3818–3829. [Google Scholar] [CrossRef]
- Liu, T.; Yao, X.; Wang, J.; Ma, C. Efficient two-vector-based sequential model predictive control for IM drives. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 903–912. [Google Scholar] [CrossRef]
- Li, X.; Xue, Z.; Zhang, L.; Hua, W. A low-complexity three-vector-based model predictive torque control for SPMSM. IEEE Trans. Power Electron. 2021, 36, 13002–13012. [Google Scholar] [CrossRef]
- Amiri, M.; Milimonfared, J.; Khaburi, D.A. Predictive torque control implementation for induction motors based on discrete space vector modulation. IEEE Trans. Ind. Electron. 2018, 65, 6881–6889. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y.; Yang, H. A universal multiple-vector-based model predictive control of induction motor drives. IEEE Trans. Power Electron. 2018, 33, 6957–6969. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yang, H.; Rodríguez, J. Variable-Vector-based Model Predictive Control with Reduced Current Harmonic and Controllable Switching Frequency for PMSM Drives. IEEE Trans. Power Electron. 2024, 39, 16429–16441. [Google Scholar] [CrossRef]
- Davari, S.A.; Azadi, S.; Flores-Bahamonde, F.; Wang, F.; Wheeler, P.; Rodriguez, J. Compensating the Measurement Error in Model-Free Predictive Control of Induction Motor via Kalman Filter-Based Ultra-Local Model. IEEE Trans. Power Electron. 2023, 39, 15811–15821. [Google Scholar] [CrossRef]
- Habibullah, M.; Lu, D.D.C. A speed-sensorless FS-PTC of induction motors using extended Kalman filters. IEEE Trans. Ind. Electron. 2015, 62, 6765–6778. [Google Scholar] [CrossRef]
- Mardani, M.M.; Lazar, R.D.; Mijatovic, N.; Dragičević, T. Artificial neural network-based constrained predictive real-time parameter adaptation controller for grid-tied VSCs. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 1507–1517. [Google Scholar] [CrossRef]
- Kousalya, V.; Rai, R.; Singh, B. Sliding model-based predictive torque control of induction motor for electric vehicle. IEEE Trans. Ind. Appl. 2022, 58, 742–751. [Google Scholar]
- Wang, J.; Wang, F.; Zhang, Z.; Li, S.; Rodríguez, J. Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems. IEEE Trans. Ind. Inform. 2017, 13, 2645–2656. [Google Scholar] [CrossRef]
- Yan, L.; Wang, F. Observer-Predictor-Based Predictive Torque Control of Induction Machine for Robustness Improvement. IEEE Trans. Power Electron. 2021, 36, 9477–9486. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Rodríguez, J.; Wang, K.; Li, Y.; Fang, Y. Learning-Based Resilient FCS-MPC for Power Converters Under Actuator FDI Attacks. IEEE Trans. Power Electron. 2024, 39, 12716–12728. [Google Scholar] [CrossRef]
- Wu, W.; Qiu, L.; Liu, X.; Guo, F.; Rodriguez, J.; Ma, J. Data-driven iterative learning predictive control for power converters. IEEE Trans. Power Electron. 2022, 37, 14028–14033. [Google Scholar] [CrossRef]
- Carlet, P.G.; Favato, A.; Bolognani, S.; Dörfler, F. Data-driven continuous-set predictive current control for synchronous motor drives. IEEE Trans. Power Electron. 2022, 37, 6637–6646. [Google Scholar] [CrossRef]
- Wu, W.; Qiu, L.; Rodriguez, J.; Liu, X.; Ma, J.; Fang, Y. Data-driven finite control-set model predictive control for modular multilevel converter. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 523–531. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Fang, Y.; Wang, K.; Li, Y.; Rodríguez, J. Combining Data-Driven and Event-Driven for Online Learning Predictive Control in Power Converters. IEEE Trans. Power Electron. 2024, 40, 563–573. [Google Scholar] [CrossRef]
- Wu, W.; Qiu, L.; Liu, X.; Ma, J.; Rodríguez, J.; Fang, Y. Data-Enabled Finite State Predictive Control for Power Converters via Adaline Neural Network. IEEE Trans. Ind. Electron. 2024. [Google Scholar] [CrossRef]
- Lim, C.S.; Lee, S.S.; Levi, E. Continuous-control-set model predictive current control of asymmetrical six- phase drives considering system nonidealities. IEEE Trans. Ind. Electron. 2023, 70, 7615–7626. [Google Scholar] [CrossRef]
- De Martin, I.D.; Brosch, A.; Tinazzi, F.; Zigliotto, M. Continuous control set model predictive torque control with minimum current magnitude criterion for synchronous motor drives. IEEE Trans. Ind. Electron. 2024, 71, 6787–6796. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Gao, X.; Tian, W.; Zhou, L.; Rodríguez, J.; Kennel, R. Continuous Control Set Predictive Speed Control of SPMSM Drives with Stability Improvement. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 3750–3764. [Google Scholar] [CrossRef]
- Wang, F.; Wei, Y.; Young, H.; Ke, D.; Huang, D.; Rodríguez, J. Continuous-Control-Set Model-Free Predictive Control Using Time-Series Subspace for PMSM Drives. IEEE Trans. Ind. Electron. 2024, 71, 6656–6666. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Y.; Fan, M.; Ji, A.; Xiao, Y.; Zhang, N.; Zhang, W.; Garcia, C.; Vazquez, S.; Rodríguez, J. An Improved Implicit Model Predictive Current Control with Continuous Control Set for PMSM Drives. IEEE Trans. Transp. Electrif. 2022, 8, 2444–2455. [Google Scholar] [CrossRef]
- Li, Q.; Lv, R.; Kennel, R.; Rodríguez, J. Semiclosed Loop Based on Predictive Current Control for SPMSM Drives During Servo Stamping. IEEE Trans. Power Electron. 2022, 39, 11430–11440. [Google Scholar] [CrossRef]
- Wei, Y.; Ke, D.; Yu, X.; Wang, F.; Rodríguez, J. Adaptive Inertia Observer-Based Model-Free Predictive Current Control for PMSM Driving System of Electric Vehicles. IEEE Trans. Ind. Appl. 2022, 60, 6252–6262. [Google Scholar] [CrossRef]
- Ma, C.; Song, W.; Li, J.; Yue, H.; Rodríguez, J.; Garcia, C.; De Belie, F. A Direct Optimal Input Determination Data-Based Predictive Current Control for PMSM Drives Without System Identification. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 2707–2717. [Google Scholar] [CrossRef]
MPC Strategies | Control Objectives | Cost Function Design | Typical Characteristics and Improved Applications |
---|---|---|---|
MPCC | Stator current component | Current decoupled control Rapid current dynamic response Unsatisfactory parameter robustness Relatively large current harmonics [47,48] | |
MPTC | Torque and stator flux | Direct control of torque and flux Rapid torque dynamic response Weighting factor required Good robustness for rotor parameters Unsatisfactory torque/flux ripple [49,50] | |
MPFC | Flux vector | Direct control of stator flux Rapid torque dynamic response Weighting factor elimination Relatively good scalability of cost function [51,52] | |
MPSC | Rotor speed and stator current | Direct control of rotor speed Rapid speed response Weighting factor required Complex cost function design [10,53] |
MPC Strategies | Evaluation Form | Optimal Solution Decision-Making |
---|---|---|
Ranking-based MPC | Parallel evaluation | Optimize the average ranking of J1 and J2. Relatively large current harmonics [62] |
Sequential MPC | Sequential evaluation | Evaluate and select vectors in order of J1 and J2. [63,64] |
Parallel MPTC | Parallel evaluation | Integrate and optimize the top three ranking results of J1 and J2. [65] |
Fast computation-based MPC | Direct computation of the optimal solution | Synthesize and solve reference vectors based on deadbeat technique, geometric method, or region method. [42,50,66,67] |
Improved MPC Method | Control Objectives | Number of Vectors Applied | Number of Candidates | Execution Time/Controller | Weighting Factor | Main Contributions |
---|---|---|---|---|---|---|
MPCC [47] | Stator current | 2 | 1 | ≈39 μs DSP TMS320F28377D | No | Direct computation of the optimal solution |
MPTC [49] | Torque Stator flux | 3 | 4 | ≈14 μs DSP TMS320F28377D | No | Optimized switching pattern |
RVV-MPC [50] | Stator voltage | 2 | 1 | ≈37 μs DSP TMS320F28335 | No | Reference voltage vector synthesis |
MPFC [68] | Stator flux | 2 | 3 | ≈55 μs DSP TMS320F28335 | No | Reference flux vector synthesis |
MPSC [10] | Rotor speed Stator current | 1 | 7 | ≈43 μs DSP TMS320F28335 | Yes | Excellent dynamic performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Long, J. Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives. Electronics 2024, 13, 4969. https://doi.org/10.3390/electronics13244969
Yu Z, Long J. Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives. Electronics. 2024; 13(24):4969. https://doi.org/10.3390/electronics13244969
Chicago/Turabian StyleYu, Zeyi, and Jiang Long. 2024. "Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives" Electronics 13, no. 24: 4969. https://doi.org/10.3390/electronics13244969
APA StyleYu, Z., & Long, J. (2024). Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives. Electronics, 13(24), 4969. https://doi.org/10.3390/electronics13244969