Research on Radiation Damage and Reinforcement of Control and Sensing Systems in Nuclear Robots
Abstract
:1. Introduction
2. Experimental Sample and Preparation
2.1. Experimental Sample
2.2. Experimental Conditions
2.3. Experimental Detection Method
3. Experimental Results and Discussion
3.1. Sensing System Radiation Damage
3.2. Control System Radiation Damage
3.3. Battery Radiation Damage
4. Shielding Reinforcement of Control and Sensing System Research
4.1. Radiation-Resistant Shielding Reinforcement Structure Design
4.2. Simulation Shielding Calculation and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Zhang, Y.; Xiang, Y.; Huang, W.; Qian, J.; Dong, Y. The current situation and development trend of robot technology in nuclear power plants. J. Robot. Appl. 2011, 24, 12–16. [Google Scholar]
- Liu, C.; Yan, Z.; Deng, J.; Zhang, B.; Guo, L. Research status and key technology analysis of emergency robots in nuclear power plants. Nucl. Sci. Eng. 2013, 33, 97–105. [Google Scholar] [CrossRef]
- Han, Y.; Chi, X.; Wang, C.; Wang, C.; Liang, R.; Li, G.; Chen, F.; Sheng, Y.; Sun, Y. Application design of radiation-resistant robots in nuclear facility decommissioning scenarios. Nucl. Electron. Detect. Technol. 2022, 406, 992–999. [Google Scholar]
- Liu, Z. Evaluation of radiation resistance performance of satellite power system based on QUM. Master’s Thesis, National University of Defense Technology, Changsha, China, 2016. Available online: https://kns.cnki.net/kcms2/article/abstract?v=gr2ERH1ElEsFCB7Gj0SSrPsP2zOxpSoXU21Bm-r5vEptwGKm8RMlezrTWiwXSZfDZBvqswuaDiNs0K0eVheIIIS15IiHcqgWlbTvMrpRvoYe2FdyHNU7Dp8z7IeDmK_B3n6JvJ4eKPTlQuALkd6stA==&uniplatform=NZKPT&language=CHS (accessed on 13 February 2024).
- Chen, F.; Zhu, W.; Dong, Q.; Han, Y.; Yan, S.; Shen, H. Radiation-resistant design and testing of remote-controlled robots. Nucl. Electron. Detect. Technol. 2016, 36, 121–124. Available online: https://kns.cnki.net/kcms2/article/abstract?v=gr2ERH1ElEttbrw0ifDaKqAtby-VWi5NtA6ooAeBRaG6cSfXM8E2ELPT-G997Gl4xqsvZZt6h4HS04OQwSMhnN9xNzz9u-lF2HXl3zzlspUIYh2XzXAckQUok-Z2v3-R5PFul4QsswjeeHD3xFEhbA==&uniplatform=NZKPT&language=CHS (accessed on 13 February 2024).
- Su, K.; Yang, F.; Chen, Y. Design of special robot joint module and radiation protection. Nucl. Electron. Detect. Technol. 2023, 6, 56–61. [Google Scholar] [CrossRef]
- Laurent, P.H. Robotics and Radiation Hardening in Nuclear. Industry 2000. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2000. [Google Scholar]
- Tang, B.; Wang, Z.; Liu, M.; Xiao, Z.; Zhang, Y.; Huang, S. Simulation test research on ionizing radiation damage of charge-coupled devices. J. Electron. 2010, 38, 1192–1195. [Google Scholar]
- Li, J. Electron and Proton Radiation and Comprehensive Radiation Damage of Amorphous SiO2 Thin Film for MOS Devices. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2022. [Google Scholar]
- Zhao, M. Study on Radiation Damage of Silicon-Based Power VDMOS Devices. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2021. [Google Scholar]
- Li, L. Research on Displacement Damage Mechanism and Reinforcement Key Technology of MOS-Controlled Thyristor. Ph.D. Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. [Google Scholar]
- Jiang, M. Damage Effects of Single-Crystal Silicon Solar Cells under Proton, Electron, and Comprehensive Irradiation. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2015. [Google Scholar]
- Jiang, H. Study on Radiation Damage Effects of HfO2-Based MIS Capacitors. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2022. [Google Scholar]
- He, B.; Wang, G.; Zhou, H.; Luo, Y.; Jiang, J. Comparison of radiation damage in NMOSFET devices with different sources and different γ dose rates. J. Electron. 2002, 1229–1231. Available online: https://kns.cnki.net/kcms2/article/abstract?v=gr2ERH1ElEtB1u5RpQpk8mIEuWdDTML4SD9XMDZQMy9UY5_uga-2Bfk7RV_J2tJp9YgLiFnw5sNkYptYMQzOAPh5-2bpLVQicUXK3ZocBt7n9MA3mHw-l-6nQ_WScrJjUoyVwYz_k3A=&uniplatform=NZKPT&language=CHS (accessed on 13 February 2024).
- Ren, D.; Yu, X.; Ai, E.; Zhang, G.; Lu, F.; Guo, Q.; Fan, L.; Yan, R. Hot carrier damage of MOS capacitors and its relationship with ionizing radiation damage. Prog. Solid-State Electron. 2001, 103–108. Available online: https://kns.cnki.net/kcms2/article/abstract?v=gr2ERH1ElEvSSfztAC_EOLw7VOmNSPqPKIaOj3jERfDDGnO7qcacvwgfQqop-M21Dyi32JDKQ6QBwRzLvRTFXDloEhK9tCxz6P25zTWTIa-mNdHkvxnxBS_MLeWK4UHInW8Iz0s8Oj0=&uniplatform=NZKPT&language=CHS (accessed on 13 February 2024).
- He, Z.; Chen, W.; Han, J.; Liu, X.; Li, N.; Chen, R.; Luo, Y.; Yao, Z.; Li, P.; Wu, D. Radiation Effects and Radiation Hardening Techniques of Novel Microsystems. Sci. China Phys. Mech. Astron. 2024, 54, 5–22. [Google Scholar]
- Xie, R.; Ge, C.; Zhou, X.; Zhou, X.; Cao, L.; Chen, L.; Wu, J.; Qiao, M. Total Dose Radiation Effects on Radiation Hardened LDMOS Devices. Mod. Appl. Phys. 2023, 14, 172–177. [Google Scholar]
- Lee, M.; Cho, S.; Lee, N.; Kim, J. Design for High Reliability of CMOS IC With Tolerance on Total Ionizing Dose Effect. IEEE Trans. Nucl. Sci. 2020, 20, 459–467. [Google Scholar] [CrossRef]
- Messenger, G.C.; Ash, M.S. The Effects of Radiation of Electronic Systems; Van Nostrand Reinhold Company: New York, NY, USA, 1986; pp. 1–20. [Google Scholar]
- Chen, P. Radiation Effects on Semiconductor Devices and Integrated Circuits; National Defense Industry Press: Beijing, China, 2005; pp. 8–23. [Google Scholar]
- Daniel, M. Fleetwood, otal-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies. IEEE Trans. Nucl. Sci. 2020, 67, 1216–1240. [Google Scholar]
- Sato, S.; Beerninkk, K.; Ohshima, T. Degradation behavior of flexible a-Si/a-SiGe/a-SiGe triple- junction solar cells irradiated with protons. IEEE J. Photovolt. 2013, 3, 1415–1422. [Google Scholar] [CrossRef]
- Jun, I.; Xapsos, M.A.; Messenger, S.R.; Burke, E.A.; Walters, R.J.; Summers, G.P.; Jordan, T. Proton nonionizing energy loss(NIEL)for device applications. IEEE Trans. Nucl. Sci. 2003, 50, 1924–1928. [Google Scholar]
- Wu, Y. Multifunctional Neutronics Calculation Methodology and Program for Nuclear Design and Radiation Safety Evaluation. Fusion Sci. Technol. 2018, 74, 321–329. [Google Scholar] [CrossRef]
No. | Device | Model | Quantity | Manufacturer | Key Parameter |
---|---|---|---|---|---|
1 | Hall sensors | DW-AS-624-M8-001 | 5 | Contrinex | Contrinex inductive proximity sensor, tubular, 8 mm diameter × 35 mm body, 304 stainless steel housing, PNP, N.C. output, 2 mm sensing distance, flush, 5 kHz switching frequency, IP67, 3-pin M8 quick-disconnect. |
2 | Pressure transducers | MIK-P300 | 5 | MEACON | Provides measurement accuracy up to 0.05%FS. The pressure range is 0~150 Mpa, 180 Mpa, 200 Mpa, 220 Mpa |
3 | Temperature transducers | MIK-WZPK-G | 5 | MEACON | a mineral insulated resistance thermometers, a wide range of temperatures, from −200 °C to +500 °C, Tolerance (°C) ± (0.15 + 0.002|t|) |
4 | Relays | JD2912-1Z-24VCD | 5 | WUASO | Nominal Current Rating: 40 A/60 A, working Voltage:12 V/24 V, working temperature: −25 °C–+100 °C |
5 | Transformers | QUINT-PS/3AC/24DC/20 | 5 | PHOENIX CONTACT | Primary-switched power supply unit QUINT POWER, Screw connection, SFB Technology (Selective Fuse Breaking), input: 3-phase, output: 24 V DC/20 A |
6 | Circuit breakers | NXB-63a | 5 | CHNT | Switch Type: ON + OFF, Latching Mechanical life: 20,000 times Tripping mode: Over-current tripping device Number of Pole: 2P Rated Voltage: 6000 (V) Material: Plastic, Electric Components |
7 | Phase-sequence relays | NJB1-X1 | 5 | CHNT | Rated operational voltage: 200 V~500 V Operation time: phase sequence, phase failure ≤ 0.1 s 3.3 Contact capacity: Ue/Ie: AC-15 220 V/0.75 A, 380V/0.47 A; Ith: 3 A Mounting type: rail type, installation type Power consumption: ≤3 VA Note: In normal operation, the NO contact of the relay is closed, the operation indicator is on. |
8 | Thermal overload relays | JR36-20 | 5 | CHNT | Altitude: no more than 2000 m; Ambient temperature: −50 °C~+40 °C Relative humidity: no more than 50% when the highest temperature is +40 °C Rated insulation voltage (Ui) 380 V RConventional heating current (Ith) 5 A |
9 | DC contactor | NC1-0910Z | 5 | CHNT | 3 NO Main Poles + 1 NO Auxiliary, 24 V DC Coil AC1:20A AC3:9A KW:4 |
10 | Controllers | CR0232 | 5 | Mobilsteuerung | Operating voltage [V]10…32 DC Total number of inputs and outputs: 80 a variety of input and output interfaces and functions |
11 | Battery | Ternary lithium /Lithium iron phosphate | 4 | CHNT | Ternary lithium: 12 V/2200 mAh 3.7 V/1300 mAh /Lithium iron phosphate: 12.8 V/800 mAh 3.2 V/1500 mAh |
Device | Dose Rate | Time | Parameter | Failure State |
---|---|---|---|---|
Hall sensors | From 180 Gy/h to 800 Gy/h | 4.5 h | Voltage (V) | Greater than 5 V for two consecutive measurements |
Pressure transducers | Pressure (KPa) | Doubled twice consecutively | ||
Temperature transducers | Temperature (°C) | Greater than 10 V for two consecutive measurements | ||
Transformers | Output voltage (V) | The function is missing or the indicator is off for the first time | ||
DC contactor | Coil voltage (V) | The function is missing or the indicator is off for the first time | ||
Circuit breakers | Circuit connectivity | The function is missing or the indicator is off for the first time | ||
Phase-sequence relays | Circuit connectivity | The function is missing or the indicator is off for the first time | ||
Thermal overload relays | Circuit connectivity | The function is missing or the indicator is off for the first time | ||
Controllers | Feedback signal | Feedback signal error /signal interruption | ||
Relays | Output voltage (V) | Greater than 10 V for two consecutive measurements | ||
Battery | Output voltage (V) | Greater than 5 V for two consecutive measurements |
Group | First Failure Time (min) | A | B | C | D | E | |
---|---|---|---|---|---|---|---|
Device | |||||||
Hall sensors | 90 | 1200 | \ | \ | \ | \ | |
Pressure transducers | 60 | 830 | 897 | \ | \ | 1030 | |
Temperature transducers | 100 | 2400 | 2267 | 3133 | 1333 | 1466 |
Group | A | B | C | D | E | |
---|---|---|---|---|---|---|
Device | ||||||
Relays | \ | \ | \ | \ | \ | |
Transformers | 173 | 293 | 173 | 200 | 173 | |
Circuit breakers | \ | \ | \ | \ | \ | |
Phase-sequence relays | \ | \ | \ | \ | \ | |
Thermal overload relays | \ | \ | \ | \ | \ | |
Dc contactor | \ | \ | \ | \ | \ | |
Controllers | 116 | 125 | 116 | 144 | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Zou, S.; Lin, G.; Tang, D.; Wei, C.; Xu, S. Research on Radiation Damage and Reinforcement of Control and Sensing Systems in Nuclear Robots. Electronics 2024, 13, 1214. https://doi.org/10.3390/electronics13071214
Chang Y, Zou S, Lin G, Tang D, Wei C, Xu S. Research on Radiation Damage and Reinforcement of Control and Sensing Systems in Nuclear Robots. Electronics. 2024; 13(7):1214. https://doi.org/10.3390/electronics13071214
Chicago/Turabian StyleChang, Yinlin, Shuliang Zou, Guang Lin, Dewen Tang, Cuiyue Wei, and Shoulong Xu. 2024. "Research on Radiation Damage and Reinforcement of Control and Sensing Systems in Nuclear Robots" Electronics 13, no. 7: 1214. https://doi.org/10.3390/electronics13071214
APA StyleChang, Y., Zou, S., Lin, G., Tang, D., Wei, C., & Xu, S. (2024). Research on Radiation Damage and Reinforcement of Control and Sensing Systems in Nuclear Robots. Electronics, 13(7), 1214. https://doi.org/10.3390/electronics13071214