Intelligent Security Authentication for Connected and Autonomous Vehicles: Attacks and Defenses
Abstract
:1. Introduction
1.1. Prior Art and Motivation
1.2. Novelty and Contribution
- An authentication framework using generative adversarial networks is introduced for IPCS systems, featuring a verification mechanism to identify potential pseudo-attack devices.
- An improved signal enhancement network is constructed using an advanced convolutional neural network, which is designed for denoising tasks.
- Extensive experiments were conducted on publicly available datasets to demonstrate the effectiveness of the proposed method in terms of denoising quality and authentication performance.
- Lastly, the effectiveness of the proposed method was demonstrated on the National Institute of Standards and Technology (NIST) dataset [46]. The superiority of the GAF scheme over existing methods was demonstrated.
1.3. Organization
2. Attack Model
3. Materials and Methods
3.1. Overall Design
3.2. Internal Structure of Neural Network Based on NRCT-4CRD
3.3. Improved DCGAN-Based Signal Enhancement Process
4. Numerical Results and Discussion
4.1. Experiment Setup
4.2. Parameter Setting
4.3. Denoising Performance
4.4. Superiority Evaluation
4.5. Accuracy Evaluation
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IPCS | Integrated positioning, communication, and sensing; |
CIR | Channel impulse response; |
CFO | Carrier frequency offset; |
RSSI | Received signal strength index; |
AoA | Angle of arrival; |
DL | Deep learning; |
GAF | Generative adversarial network learning-assisted authentication framework; |
NIST | National Institute of Standards and Technology; |
DC | Deep convolutional; |
DCGAN | DC-based generative adversarial network. |
References
- Fang, H.; Wang, X.; Tomasin, S.; Al-Dhahir, N. Lightweight group authentication for decentralized edge collaboration. IEEE Commun. Mag. 2023, 60, 124–129. [Google Scholar] [CrossRef]
- Song, F.; Li, L.; You, I.; Yu, S.; Zhang, H. Optimizing High-Speed Mobile Networks with Smart Collaborative Theory. IEEE Wirel. Commun. 2022, 29, 48–54. [Google Scholar] [CrossRef]
- Im, J.H.; Jeon, S.Y.; Lee, M.K. Practical privacy-preserving face authentication for smartphones secure against malicious clients. IEEE Trans. Inf. Forensics Secur. 2023, 15, 2386–2401. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Wu, D.; Tang, T.; Wang, R. Fairness-Aware Federated Learning with Unreliable Links in Resource-Constrained Internet of Things. IEEE Internet Things J. 2021, 9, 17359–17371. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, N.; Wu, D.; Wang, H.; Wang, R. Energy-Efficient Mobile Edge Computing Under Delay Constraints. IEEE Trans. Green Commun. Netw. 2022, 6, 776–786. [Google Scholar] [CrossRef]
- Zhong, A.; Li, Z.; Wu, D.; Tang, T.; Wang, R. Stochastic Peak Age of Information Guarantee for Cooperative Sensing in Internet of Everything. IEEE Internet Things J. 2023, 10, 15186–15196. [Google Scholar] [CrossRef]
- Illi, E.; Qaraqe, M.; Bouanani, F.E. A Novel Hybrid Physical-Layer Authentication Scheme for Multiuser Wireless Communication Systems. IEEE Internet Things J. 2023, 10, 22591–22610. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Zheng, D.; Chen, S.; Gunduz, D.; Poor, H.V. Transformer-Empowered 6G Intelligent Networks: From Massive MIMO Processing to Semantic Communication. IEEE Wirel. Commun. 2023, 30, 127–135. [Google Scholar] [CrossRef]
- Mahmood, N.; Berardinelli, G.; Khatib, E.J.; Hashemi, R.; Lima, C.; Latva-aho, M. A Functional Architecture for 6G Special Purpose Industrial IoT Networks. IEEE Trans. Ind. Inform. 2022, 19, 2530–2540. [Google Scholar] [CrossRef]
- Li, Z.; Li, F.; Tang, T.; Zhang, H.; Yang, J. Video caching and scheduling with edge cooperation. Digit. Commun. Netw. 2022, 2352–8648. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, L.; Li, Y.; Feng, D.; Cao, W. Intelligent Offloading in Multi-Access Edge Computing: A State-of-the-Art Review and Framework. IEEE Commun. Mag. 2019, 57, 56–62. [Google Scholar] [CrossRef]
- He, W.; Xu, W.; Ge, X.; Han, Q.-L.; Du, W.; Qian, F. Secure Control of Multiagent Systems Against Malicious Attacks: A Brief Survey. IEEE Trans. Ind. Inform. 2022, 18, 3595–3608. [Google Scholar] [CrossRef]
- Zografopoulos, I.; Konstantinou, C. Detection of Malicious Attacks in Autonomous Cyber-Physical Inverter-Based Microgrids. IEEE Trans. Ind. Inform. 2022, 18, 5815–5826. [Google Scholar] [CrossRef]
- Gai, K.; Ding, Y.; Wang, A.; Zhu, L.; Choo, K.K.R.; Zhang, Q.; Wang, Z. Attacking the Edge-of-Things: A Physical Attack Perspective. IEEE Internet Things J. 2022, 9, 5240–5253. [Google Scholar] [CrossRef]
- Song, F.; Li, L.; You, I.; Zhang, H. Enabling Heterogeneous Deterministic Networks with Smart Collaborative Theory. IEEE Netw. 2021, 35, 64–71. [Google Scholar] [CrossRef]
- Xie, N.; Sha, M.; Hu, T.; Tan, H. Multi-User Physical-Layer Authentication and Classification. IEEE Trans. Wirel. Commun. 2023, 22, 6171–6184. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Zhang, Q.; Zhang, P.; Huang, L.; Xie, N.; Lu, J. Physical Layer Authentication in Spatial Modulation. IEEE Trans. Commun. 2023, 71, 2947–2962. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.; Hanzo, L. Adaptive Trust Management for Soft Authentication and Progressive Authorization Relying on Physical Layer Attributes. IEEE Trans. Commun. 2020, 68, 2607–2620. [Google Scholar] [CrossRef]
- Qiu, X.; Jiang, T.; Wu, S.; Hayes, M. Physical Layer Authentication Enhancement Using a Gaussian Mixture Model. IEEE Access 2018, 6, 53583–53592. [Google Scholar] [CrossRef]
- Zhang, Y. Physical Layer Authentication Based on Gaussian Mixture Model Under Unknown Number of Attackers. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 70–74. [Google Scholar]
- Zhu, Y.; Dong, X.; Lu, T. An Adaptive and Parameter-Free Recurrent Neural Structure for Wireless Channel Prediction. IEEE Trans. Commun. 2019, 67, 8086–8096. [Google Scholar] [CrossRef]
- Wang, S.; Huang, K.; Xu, X.; Zhong, Z.; Zhou, Y. CSI-Based Physical Layer Authentication via Deep Learning. IEEE Wirel. Commun. Lett. 2022, 11, 1748–1752. [Google Scholar] [CrossRef]
- Chen, Y.; Ho, P.-H.; Wen, H.; Chang, S.Y.; Real, S. On Physical-Layer Authentication via Online Transfer Learning. IEEE Internet Things J. 2022, 9, 1374–1385. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, T.; Lv, S.; Xiao, L. Physical-Layer Authentication Based on Extreme Learning Machine. IEEE Commun. Lett. 2017, 21, 1557–1560. [Google Scholar] [CrossRef]
- Xie, N.; Chen, J.; Huang, L. Physical-Layer Authentication Using Multiple Channel-Based Features. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2356–2366. [Google Scholar] [CrossRef]
- Senigagliesi, L.; Baldi, M.; Gambi, E. Comparison of Statistical and Machine Learning Techniques for Physical Layer Authentication. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1506–1521. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Shen, Y.; Jiang, X. Exploiting Channel Gain and Phase Noise for PHY-Layer Authentication in Massive MIMO Systems. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4265–4279. [Google Scholar] [CrossRef]
- Xia, S. Multiple Correlated Attributes Based Physical Layer Authentication in Wireless Networks. IEEE Trans. Veh. Technol. 2021, 70, 1673–1687. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.; Xu, L. Fuzzy Learning for Multi-Dimensional Adaptive Physical Layer Authentication: A Compact and Robust Approach. IEEE Trans. Wirel. Commun. 2020, 19, 5420–5432. [Google Scholar] [CrossRef]
- Tushar, W.; Yuen, C.; Saha, T.K.; Nizami, S.; Alam, M.R.; Smith, D.B.; Poor, H.V. A Survey of Cyber-Physical Systems from a Game-Theoretic Perspective. IEEE Access 2023, 11, 9799–9834. [Google Scholar] [CrossRef]
- Meng, R. Multiuser Physical-Layer Authentication Based on Latent Perturbed Neural Networks for Industrial Internet of Things. IEEE Internet Things J. 2023, 10, 637–652. [Google Scholar] [CrossRef]
- Lu, X.; Lei, J.; Shi, Y.; Li, W. Improved Physical Layer Authentication Scheme Based on Wireless Channel Phase. IEEE Wirel. Commun. Lett. 2022, 11, 198–202. [Google Scholar] [CrossRef]
- Zhang, Y. CV-3DCNN: Complex-Valued Deep Learning for CSI Prediction in FDD Massive MIMO Systems. IEEE Wirel. Commun. Lett. 2021, 10, 266–270. [Google Scholar] [CrossRef]
- Germain, K.S.; Kragh, F. Channel Prediction and Transmitter Authentication With Adversarially-Trained Recurrent Neural Networks. IEEE Open J. Commun. Soc. 2021, 2, 964–974. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Physical Layer Authentication Enhancement Using Two-Dimensional Channel Quantization. IEEE Trans. Wirel. Commun. 2016, 15, 4171–4182. [Google Scholar] [CrossRef]
- Xie, N. Physical Layer Authentication With High Compatibility Using an Encoding Approach. IEEE Trans. Commun. 2022, 70, 8270–8285. [Google Scholar] [CrossRef]
- Yin, X.; Fang, X.; Zhang, N.; Yang, P.; Sha, X.; Qiu, J. Online Learning Aided Adaptive Multiple Attribute-Based Physical Layer Authentication in Dynamic Environments. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1106–1116. [Google Scholar] [CrossRef]
- Wang, H.-M.; Fu, Q.-Y. Channel-Prediction-Based One-Class Mobile IoT Device Authentication. IEEE Internet Things J. 2022, 9, 7731–7745. [Google Scholar] [CrossRef]
- Qiu, X.; Dai, J.; Hayes, M. A Learning Approach for Physical Layer Authentication Using Adaptive Neural Network. IEEE Access 2020, 8, 26139–26149. [Google Scholar] [CrossRef]
- Qiu, X.; Sun, X.; Hayes, M. Enhanced Security Authentication Based on Convolutional-LSTM Networks. Sensors 2021, 21, 5379. [Google Scholar] [CrossRef] [PubMed]
- Shawky, M.A.; Bottarelli, M.; Epiphaniou, G.; Karadimas, P. An Efficient Cross-Layer Authentication Scheme for Secure Communication in Vehicular Ad-Hoc Networks. IEEE Trans. Veh. Technol. 2023, 72, 8738–8754. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, D.; Guo, C.; Huang, W. Physical Layer Authentication Based on Channel Polarization Response in Dual-Polarized Antenna Communication Systems. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2144–2159. [Google Scholar] [CrossRef]
- Zhang, H.; Sindagi, V.; Patel, V.M. Image De-Raining Using a Conditional Generative Adversarial Network. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3943–3956. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, K.; Wang, Z.; Ren, W.; Zhang, J.; Lin, C.-W. Multi-Scale Fusion and Decomposition Network for Single Image Deraining. IEEE Trans. Image Process. 2024, 33, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, G.; Chang, Y. An Efficient Single Image De-Raining Model With Decoupled Deep Networks. IEEE Trans. Image Process. 2024, 33, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Cell, R.; Remley, K.A.; Moaveri, N. Radio frequency measurements for selected manufacturing and industrial environments. NISTTech. Rep. 2016. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, S.; Jiang, C.; Gao, N.; Qiu, X.; Zhang, W. Trustworthy and Scalable Federated Edge Learning for Future Integrated Positioning, Communication and Computing System: Attacks and Defenses. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Arjovsky, M.; Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. arXiv 2017, arXiv:1701.04862. [Google Scholar]
Parameters | Assignment |
---|---|
Size of the automotive factory | 400 m × 400 m |
Frequency | 5.4 GHz |
Location | aa plant day 2 at automotive assembly plant |
Path loss exponent | 3.6 |
Delay | 644.4 ns |
Delay spread | 177.4 ns |
K-factor | 4.7 dB |
TX antenna gain | 3.6 |
RX antenna gain | −3.5 |
PN oversample factor | 4.0 |
Sample rate | 80 MHz |
Parameters | Assignment |
---|---|
Dataset scenarios | 6 |
Total number of training data samples | 30,000 |
Total number of test data samples | 3000 |
Epoch | 1000 |
Batch size | 16 |
Kernel size | 1 × 322 |
Learning rate | 1.00 × 10−4 |
Optimizer | Adam |
Generator layers | 3 |
Discriminator layers | 6 |
Algorithm | Parameters | −2.5 dB | 2.5 dB | 7.5 dB | 12.5 dB | 17.5 dB |
---|---|---|---|---|---|---|
MMSE-SPZC | PESQ | 1.0 | 1.5 | 1.9 | 2.6 | 4.7 |
STOI | 0.13 | 0.15 | 0.17 | 0.18 | 0.19 | |
SNRseg | −5.4 | −4.4 | 0.5 | 4.6 | 7.8 | |
SEGAN | PESQ | 2.0 | 2.6 | 2.5 | 3.7 | 4.1 |
STOI | 0.15 | 0.18 | 0.18 | 0.19 | 0.19 | |
SNRseg | 0.3 | 1.4 | 4.8 | 7.5 | 11.0 | |
GAF | PESQ | 2.0 | 2.1 | 2.8 | 4.1 | 4.3 |
STOI | 0.14 | 0.18 | 0.19 | 0.19 | 0.22 | |
SNRseg | 1.3 | 1.5 | 1.7 | 1.9 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Yu, J.; Jiang, W.; Sun, X. Intelligent Security Authentication for Connected and Autonomous Vehicles: Attacks and Defenses. Electronics 2024, 13, 1577. https://doi.org/10.3390/electronics13081577
Qiu X, Yu J, Jiang W, Sun X. Intelligent Security Authentication for Connected and Autonomous Vehicles: Attacks and Defenses. Electronics. 2024; 13(8):1577. https://doi.org/10.3390/electronics13081577
Chicago/Turabian StyleQiu, Xiaoying, Jinwei Yu, Wenbao Jiang, and Xuan Sun. 2024. "Intelligent Security Authentication for Connected and Autonomous Vehicles: Attacks and Defenses" Electronics 13, no. 8: 1577. https://doi.org/10.3390/electronics13081577
APA StyleQiu, X., Yu, J., Jiang, W., & Sun, X. (2024). Intelligent Security Authentication for Connected and Autonomous Vehicles: Attacks and Defenses. Electronics, 13(8), 1577. https://doi.org/10.3390/electronics13081577