Random Numbers Generated Based on Dual-Channel Chaotic Light
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
3.1. Effects of the Parameters on the Unpredictability of NLs
3.2. Extracting Random Numbers
3.2.1. Internal Parameter Matching
3.2.2. Internal Parameter Mismatch
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Yang, B.; Su, X. An Improved Two-Way Security Authentication Protocol for RFID System. Information 2018, 9, 86. [Google Scholar] [CrossRef]
- Yu, F.; Li, L.; Tang, Q.; Cai, S.; Song, Y.; Xu, Q. A Survey on True Random Number Generators Based on Chaos. Discrete Dyn. Nat. Soc. 2019, 2019, e2545123. [Google Scholar] [CrossRef]
- Dang, B.; Sun, J.; Zhang, T.; Wang, S.; Zhao, M.; Liu, K.; Xu, L.; Zhu, J.; Cheng, C.; Bao, L.; et al. Physically Transient True Random Number Generators Based on Paired Threshold Switches Enabling Monte Carlo Method Applications. IEEE Electron Device Lett. 2019, 40, 1096–1099. [Google Scholar] [CrossRef]
- Cheng, G.; Wang, C.; Chen, H. A Novel Color Image Encryption Algorithm Based on Hyperchaotic System and Permutation-Diffusion Architecture. Int. J. Bifurc. Chaos 2019, 29, 1950115. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, F.; Yu, F. A Robust Synchronization-Based Chaotic Secure Communication Scheme with Double-Layered and Multiple Hybrid Networks. IEEE Syst. J. 2020, 14, 2508–2519. [Google Scholar] [CrossRef]
- Gu, K.; Jia, W.; Wang, G.; Wen, S. Efficient and Secure Attribute-Based Signature for Monotone Predicates. Acta Inform. 2017, 54, 521–541. [Google Scholar] [CrossRef]
- Xia, Z.; Fang, Z.; Zou, F.; Wang, J.; Sangaiah, A.K. Research on Defensive Strategy of Real-Time Price Attack Based on Multiperson ZeroDeterminant. Secur. Commun. Netw. 2019, 2019, e6956072. [Google Scholar] [CrossRef]
- Gu, K.; Wu, N.; Yin, B.; Jia, W. Secure Data Query Framework for Cloud and Fog Computing. IEEE Trans. Netw. Serv. Manag. 2020, 17, 332–345. [Google Scholar] [CrossRef]
- Yu, F.; Li, L.; He, B.; Liu, L.; Qian, S.; Huang, Y.; Cai, S.; Song, Y.; Tang, Q.; Wan, Q.; et al. Design and FPGA Implementation of a Pseudorandom Number Generator Based on a Four-Wing Memristive Hyperchaotic System and Bernoulli Map. IEEE Access 2019, 7, 181884–181898. [Google Scholar] [CrossRef]
- Rezk, A.A.; Madian, A.H.; Radwan, A.G.; Soliman, A.M. Reconfigurable Chaotic Pseudo Random Number Generator Based on FPGA. AEU—Int. J. Electron. Commun. 2019, 98, 174–180. [Google Scholar] [CrossRef]
- Abutaleb, M.M. A Novel True Random Number Generator Based on QCA Nanocomputing. Nano Commun. Netw. 2018, 17, 14–20. [Google Scholar] [CrossRef]
- Hasan, R.S.; Tawfeeq, S.K.; Mohammed, N.Q.; Khaleel, A.I. A True Random Number Generator Based on the Photon Arrival Time Registered in a Coincidence Window between Two Single-Photon Counting Modules. Chin. J. Phys. 2018, 56, 385–391. [Google Scholar] [CrossRef]
- Kim, E.; Lee, M.; Kim, J.-J. 8.2 8Mb/s 28Mb/mJ Robust True-Random-Number Generator in 65nm CMOS Based on Differential Ring Oscillator with Feedback Resistors. In Proceedings of the 2017 IEEE International SolidState Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 144–145. [Google Scholar]
- Drutarovsky, M.; Galajda, P. A Robust Chaos-Based True Random Number Generator Embedded in Reconfigurable Switched-Capacitor Hardware. In Proceedings of the 2007 17th International Conference Radioelektronika, Brno, Czech Republic, 24–25 April 2007; pp. 1–6. [Google Scholar]
- Yang, Y.; Bai, G.; Chen, H. A 200Mbps Random Number Generator with Jitter-Amplified Oscillator. In Proceedings of the Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, China, 11–13 July 2014; pp. 1–5. [Google Scholar]
- Bejar, E.; Saldaña, J.; Raygada, E.; Silva, C. On the Jitter-to-Fast-Clock-Period Ratio in Oscillator-Based True Random Number Generators. In Proceedings of the 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 5–8 December 2017; pp. 243–246. [Google Scholar]
- Amaki, T.; Hashimoto, M.; Onoye, T. Jitter Amplifier for Oscillator-Based True Random Number Generator. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2013, E96-A, 684–696. [Google Scholar] [CrossRef]
- Yu, F.; Gao, L.; Gu, K.; Yin, B.; Wan, Q.; Zhou, Z. A Fully Qualified Four-Wing Four-Dimensional Autonomous Chaotic System and Its Synchronization. Optik 2017, 131, 79–88. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, L. Low Voltage Low Power Fully Integrated Chaos Generator. J. Circuits Syst. Comput. 2018, 27, 1850155. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Zhou, L. A Novel No-Equilibrium Hyperchaotic Multi-Wing System via Introducing Memristor. Int. J. Circuit Theory Appl. 2018, 46, 84–98. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Zhang, X.; Yao, W. Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator. Int. J. Bifurc. Chaos 2018, 28, 1850050. [Google Scholar] [CrossRef]
- Park, M.; Rodgers, J.C.; Lathrop, D.P. True Random Number Generation Using CMOS Boolean Chaotic Oscillator. Microelectron. J. 2015, 46, 1364–1370. [Google Scholar] [CrossRef]
- Çiçek, İ.; Dündar, G. A Chaos Based Integrated Jitter Booster Circuit for True Random Number Generators. In Proceedings of the 2013 European Conference on Circuit Theory and Design (ECCTD), Dresden, Germany, 8–12 September 2013; pp. 1–4. [Google Scholar]
- Mu, P.; Pan, W.; Xiang, S.; Li, N.; Liu, X.; Zou, X. Fast Physical and Pseudo Random Number Generation Based on a Nonlinear Optoelectronic Oscillator. Mod. Phys. Lett. B 2015, 29, 1550142. [Google Scholar] [CrossRef]
- Akgul, A.; Calgan, H.; Koyuncu, I.; Pehlivan, I.; Istanbullu, A. Chaos-Based Engineering Applications with a 3D Chaotic System without Equilibrium Points. Nonlinear Dyn. 2016, 84, 481–495. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, Y.; Ji, H. Sensing by Dynamics of Lasers with External Optical Feedback: A Review. Photonics 2022, 9, 450. [Google Scholar] [CrossRef]
- Komarov, A.; Komarov, K.; Niang, A.; Sanchez, F. Nature of Soliton Interaction in Fiber Lasers with Continuous External Optical Injection. Phys. Rev. A 2014, 89, 013833. [Google Scholar] [CrossRef]
- Yarunova, E.A.; Krents, A.A.; Molevich, N.E.; Anchikov, D.A. Suppression of Spatiotemporal Instabilities in BroadArea Lasers with Pump Modulation by External Optical Injection. Bull. Lebedev Phys. Inst. 2021, 48, 55–58. [Google Scholar] [CrossRef]
- Tang, S.; Liu, J.M. Chaotic Pulsing and Quasi-Periodic Route to Chaos in a Semiconductor Laser with Delayed Opto-Electronic Feedback. IEEE J. Quantum Electron. 2001, 37, 329–336. [Google Scholar] [CrossRef]
- Saboureau, P.; Foing, J.-P.; Schanne, P. Injection-Locked Semiconductor Lasers with Delayed Optoelectronic Feedback. IEEE J. Quantum Electron. 1997, 33, 1582–1591. [Google Scholar] [CrossRef]
- Tang, X.; Wu, J.; Xia, G.; Wu, Z. 17.5 Gbit/s Random Bit Generation Using Chaotic Output Signal of Mutually Coupled Semiconductor Lasers. Acta Phys. Sin. 2011, 60, 110509. [Google Scholar] [CrossRef]
- Kanter, I.; Aviad, Y.; Reidler, I.; Cohen, E.; Rosenbluh, M. An Optical Ultrafast Random Bit Generator. Nat. Photonics 2010, 4, 58–61. [Google Scholar] [CrossRef]
- Tang, X.; Wu, Z.M.; Wu, J.G.; Deng, T.; Chen, J.J.; Fan, L.; Zhong, Z.Q.; Xia, G.Q. Tbits/s Physical Random Bit Generation Based on Mutually Coupled Semiconductor Laser Chaotic Entropy Source. Opt. Express 2015, 23, 33130–33141. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Kim, B.; Chizhevsky, V.N.; Locquet, A.; Bloch, M.; Citrin, D.S.; Pan, W. Two Approaches for Ultrafast Random Bit Generation Based on the Chaotic Dynamics of a Semiconductor Laser. Opt. Express 2014, 22, 6634–6646. [Google Scholar] [CrossRef]
- Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; et al. Fast Physical Random Bit Generation with Chaotic Semiconductor Lasers. Nat. Photonics 2008, 2, 728–732. [Google Scholar] [CrossRef]
- Reidler, I.; Aviad, Y.; Rosenbluh, M.; Kanter, I. UltrahighSpeed Random Number Generation Based on a Chaotic Semiconductor Laser. Phys. Rev. Lett. 2009, 103, 024102. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.; Durkan, C.; Goulding, D.; Slepneva, S.; Kelleher, B.; Hegarty, S.P.; Huyet, G. Optical Ultrafast Random Number Generation at 1 Tb/s Using a Turbulent Semiconductor Ring Cavity Laser. Opt. Lett. 2016, 41, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cai, Q.; Li, P.; Zhang, R.; Xu, B.; Shore, K.A.; Wang, Y. Ultrafast and Real-Time Physical Random Bit Extraction with All-Optical Quantization. Adv. Photonics 2022, 4, 035001. [Google Scholar] [CrossRef]
- Cai, Q.; Li, P.; Shi, Y.; Jia, Z.; Ma, L.; Xu, B.; Chen, X.; Alan Shore, K.; Wang, Y. Tbps Parallel Random Number Generation Based on a Single Quarter-Wavelength-Shifted DFB Laser. Opt. Laser Technol. 2023, 162, 109273. [Google Scholar] [CrossRef]
- Ding, K.; Ning, C.Z. Metallic Subwavelength-Cavity Semiconductor Nanolasers. Light Sci. Appl. 2012, 1, e20. [Google Scholar] [CrossRef]
- Abdul Sattar, Z.; Shore, K.A. External Optical Feedback Effects in Semiconductor Nanolasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 500–505. [Google Scholar] [CrossRef]
- Sattar, Z.A.; Shore, K.A. Dynamics of Nanolasers Subject to Optical Injection and Optical Feedback. In Proceedings of the Physics and Simulation of Optoelectronic Devices XXIV; SPIE: Bellingham, WA, USA, 2016; Volume 9742, pp. 38–47. [Google Scholar]
- Abdul Sattar, Z.; Ali Kamel, N.; Shore, K.A. Optical Injection Effects in Nanolasers. IEEE J. Quantum Electron. 2016, 52, 1200108. [Google Scholar] [CrossRef]
- Abdul Sattar, Z.; Shore, K.A. Phase Conjugate Feedback Effects in Nano-Lasers. IEEE J. Quantum Electron. 2016, 52, 1100108. [Google Scholar] [CrossRef]
- Han, H.; Shore, K.A. Dynamical Characteristics of Nano-Lasers Subject to Optical Injection and Phase Conjugate Feedback. IET Optoelectron. 2018, 12, 25–29. [Google Scholar] [CrossRef]
- Han, H.; Shore, K.A. Modulated Mutually Coupled NanoLasers. IEEE J. Quantum Electron. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Han, H.; Shore, K.A. Analysis of High-Frequency Oscillations in Mutually-Coupled NanoLasers. Opt. Express 2018, 26, 10013–10022. [Google Scholar] [CrossRef] [PubMed]
- Elsonbaty, A.; Hegazy, S.F.; Obayya, S.S. Simultaneous Concealment of Time Delay Signature in Chaotic Nanolaser with Hybrid Feedback. Opt. Lasers Eng. 2018, 107, 342–351. [Google Scholar] [CrossRef]
- Elsonbaty, A.; Hegazy, S.F.; Obayya, S.S.A. Time Delay Signature of Chaotic Nanolasers and Its Concealment. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium—Italy (ACES), Firenze, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar]
- Qu, Y.; Xiang, S.; Wang, Y.; Lin, L.; Wen, A.J.; Hao, Y. Concealment of Time Delay Signature of Chaotic Semiconductor Nanolasers with Double Chaotic Optical Injections. IEEE J. Quantum Electron. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Fan, Y.; Hong, Y.; Li, P. Numerical Investigation on Feedback Insensitivity in Semiconductor Nanolasers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Jiang, P.; Zhou, P.; Li, N.; Mu, P.; Li, X. Time Delay Concealment and Unpredictability Enhancement of Nanolasers under External Cavity Regulation. ACTA Phys. Sin. 2021, 70, 11. [Google Scholar] [CrossRef]
- Li, N.; Susanto, H.; Cemlyn, B.R.; Henning, I.D.; Adams, M.J. Stability and Bifurcation Analysis of Spin-Polarized Vertical-Cavity Surface-Emitting Lasers. Phys. Rev. A 2017, 96, 013840. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Melbourne, I. On the Implementation of the 0–1 Test for Chaos. SIAM J. Appl. Dyn. Syst. 2009, 8, 129–145. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Yan, L.; Luo, B.; Xu, M.; Tang, Y.; Jiang, N.; Xiang, S.; Zhang, Q. Chaotic Optical Cryptographic Communication Using a Three-Semiconductor-Laser Scheme. JOSA B 2012, 29, 101–108. [Google Scholar] [CrossRef]
- Special Publication (NIST SP) 800-22 Rev 1a; A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
Parameters | Description | Value |
---|---|---|
Wavelength of MNL | ||
Cavity length | ||
Volume of active region | ||
Mode confinement factor | 0.645 | |
Quality factor | 428 | |
Differential gain | ||
Photon lifetime | ||
Feedback delay | ||
Carrier lifetime | ||
Threshold current | ||
Transparency carrier density | ||
Gain saturation | ||
Refractive index | 3.4 | |
Linewidth enhancement factor | 5 | |
External factor power reflectivity | 0.95 | |
Laser facet reflectivity | 0.85 | |
Speed of light in free space | ||
Cavity Purcell factor | 14 | |
Spontaneous emission coupling | 0.05 | |
Feedback coupling fraction | 0.025 |
Statistical Test | Retaining 4-LSBs under Identical Injection Parameters | Retaining 5-LSBs under Different Injection Parameters | ||||
---|---|---|---|---|---|---|
p-Value | Proportion | Result | p-Value | Proportion | Result | |
Frequency | 0.344048 | 0.989 | Success | 0.344048 | 0.989 | Success |
Block frequency | 0.136399 | 0.993 | Success | 0.136399 | 0.993 | Success |
Cumulative sums | 0.739918 | 0.990 | Success | 0.739918 | 0.990 | Success |
Runs | 0.779188 | 0.986 | Success | 0.779188 | 0.986 | Success |
Longest runs | 0.599693 | 0.989 | Success | 0.599693 | 0.989 | Success |
Rank | 0.320607 | 0.991 | Success | 0.320607 | 0.991 | Success |
Fast Fourier transform | 0.461612 | 0.990 | Success | 0.461612 | 0.990 | Success |
Non-overlapping template | 0.192724 | 0.981 | Success | 0.192724 | 0.981 | Success |
Overlapping template | 0.236810 | 0.997 | Success | 0.236810 | 0.997 | Success |
Universal | 0.117432 | 0.987 | Success | 0.117432 | 0.987 | Success |
Approximate entropy | 0.476911 | 0.986 | Success | 0.476911 | 0.986 | Success |
Random excursions | 0.057593 | 0.987 | Success | 0.057593 | 0.987 | Success |
Random excursions variant | 0.063864 | 0.987 | Success | 0.063864 | 0.987 | Success |
Serial | 0.258307 | 0.990 | Success | 0.258307 | 0.990 | Success |
Linear complexity | 0.836048 | 0.994 | Success | 0.836048 | 0.994 | Success |
Statistical Test | Retaining 5-LSBs under Identical Injection Parameters | Retaining 5-LSBs under Different Injection Parameters | ||||
---|---|---|---|---|---|---|
p-Value | Proportion | Result | p-Value | Proportion | Result | |
Frequency | 0.723804 | 0.984 | Success | 0.125927 | 0.987 | Success |
Block frequency | 0.811080 | 0.990 | Success | 0.385543 | 0.995 | Success |
Cumulative sums | 0.185555 | 0.985 | Success | 0.010531 | 0.987 | Success |
Runs | 0.620465 | 0.989 | Success | 0.008090 | 0.990 | Success |
Longest runs | 0.033362 | 0.990 | Success | 0.546283 | 0.989 | Success |
Rank | 0.212184 | 0.993 | Success | 0.668321 | 0.992 | Success |
Fast Fourier transform | 0.998655 | 0.986 | Success | 0.798139 | 0.991 | Success |
Non-overlapping template | 0.009880 | 0.993 | Success | 0.620465 | 0.983 | Success |
Overlapping template | 0.016037 | 0.987 | Success | 0.034712 | 0.987 | Success |
Universal | 0.560545 | 0.982 | Success | 0.054661 | 0.987 | Success |
Approximate entropy | 0.355364 | 0.986 | Success | 0.812905 | 0.982 | Success |
Random excursions | 0.280306 | 0.983 | Success | 0.213309 | 0.989 | Success |
Random excursion variants | 0.321625 | 0.985 | Success | 0.422521 | 0.987 | Success |
Serial | 0.482707 | 0.987 | Success | 0.123755 | 0.985 | Success |
Linear complexity | 0.801865 | 0.994 | Success | 0.731886 | 0.988 | Success |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Mu, P.; Wang, K.; Guo, G.; Liu, X.; He, P. Random Numbers Generated Based on Dual-Channel Chaotic Light. Electronics 2024, 13, 1603. https://doi.org/10.3390/electronics13091603
Liu G, Mu P, Wang K, Guo G, Liu X, He P. Random Numbers Generated Based on Dual-Channel Chaotic Light. Electronics. 2024; 13(9):1603. https://doi.org/10.3390/electronics13091603
Chicago/Turabian StyleLiu, Guopeng, Penghua Mu, Kun Wang, Gang Guo, Xintian Liu, and Pengfei He. 2024. "Random Numbers Generated Based on Dual-Channel Chaotic Light" Electronics 13, no. 9: 1603. https://doi.org/10.3390/electronics13091603
APA StyleLiu, G., Mu, P., Wang, K., Guo, G., Liu, X., & He, P. (2024). Random Numbers Generated Based on Dual-Channel Chaotic Light. Electronics, 13(9), 1603. https://doi.org/10.3390/electronics13091603