Neural Chaotic Oscillation: Memristive Feedback, Symmetrization, and Its Application in Image Encryption
Abstract
:1. Introduction
- A memristor is introduced into the HR neuron for firing generation, which includes four phenomena: single-spike firing, two-spike firing, three-spike firing, four-spike firing, and chaotic firing, depending on the varying intensity of synaptic strength. The impact of frequency variations on the memristor synapse is analyzed, and the memristor and resistor operating regimes are analyzed;
- Attractor doubling is implemented independently in the x-dimension and x-y-dimension, leading to the formation of unique coexisting attractors and pseudo-multi-vortex attractors. The discharging states of neurons are simulated when neurons are in the depolarization and hyperpolarization phases through the method of attractor doubling;
- The symmetric chaotic system designed is applied in chaotic encryption, yielding excellent confidentiality effects.
2. Model of the Memristive HR Neuron and the Synaptic Plasticity
3. The Impact of Synaptic Coupling Strength
4. Dynamic Symmetrization
5. Circuit Simulation
6. The Application in Image Encryption
6.1. DNA Coding
6.2. Encryption Process
6.3. Performance Analysis
6.3.1. Encryption Efficiency Analysis
6.3.2. National Institute of Standards and Technology (NIST) Test
6.3.3. TESTU01 Test
6.4. Security Performance Analysis
6.4.1. Key Space
6.4.2. Key Sensitivity Analysis
6.4.3. Histogram
6.4.4. Information Entropy
6.4.5. Correlation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carro-Pérez, I.; Sánchez-López, C.; González-Hernández, H.G. Experimental verification of a memristive neural network. Nonlinear Dyn. 2018, 93, 1823–1840. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, W.; An, X. Energy evolution in function neuronal network under different coupling channels. Nonlinear Dyn. 2024, 112, 8581–8602. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, Y.; Liu, P.; Wang, Y. Memristor-Based Neural Network Circuit of Associative Memory with Overshadowing and Emotion Congruent Effect. IEEE Trans. Neural Netw. Learn. Syst. 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Lai, C.; Zhang, H.; Li, C. Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos Solitons Fractals 2022, 158, 112017. [Google Scholar] [CrossRef]
- Bao, B.; Hu, A.; Xu, Q.; Bao, H.; Wu, H.; Chen, M. AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 2018, 92, 1695–1706. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y.; Yao, W. Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 2020, 100, 3667–3683. [Google Scholar] [CrossRef]
- Li, F.; Chen, Z.; Zhang, Y.; Bai, L.; Bao, B. Cascade tri-neuron hopfield neural network: Dynamical analysis and analog circuit implementation. AEU-Int. J. Electron. Commun. 2024, 174, 155037. [Google Scholar] [CrossRef]
- Wan, Q.; Chen, S.; Yang, Q.; Liu, J.; Sun, K. Grid multi-scroll attractors in memristive Hopfield neural network under pulse current stimulation and multi-piecewise memristor. Nonlinear Dyn. 2023, 111, 18505–18521. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Cui, L.; Sun, Y.; Xu, C.; Yu, F. Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. 2022, 18, 8839–8850. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Wang, Z.; Wang, Y. A memristive fully connect neural network and application of medical image encryption based on central diffusion algorithm. IEEE Trans. Ind. Inform. 2023, 20, 3778–3788. [Google Scholar] [CrossRef]
- Bao, B.; Hu, J.; Bao, H.; Xu, Q.; Chen, M. Memristor-coupled dual-neuron mapping model: Initials-induced coexisting firing patterns and synchronization activities. Cogn. Neurodyn. 2023, 18, 539–555. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Liu, P.; Wen, S. Memristor-based circuit design of PAD emotional space and its application in mood congruity. IEEE Internet Things J. 2023, 10, 16332–16342. [Google Scholar] [CrossRef]
- Yuan, F.; Yu, X.; Deng, Y.; Li, Y.; Chen, G. A Cu-Doped TiO2−x Nanoscale Memristor with Application to Heterogeneous Coupled Neurons. IEEE Trans. Ind. Electron. 2023, 71, 9480–9488. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L.; Hu, G.; Guan, Z.H.; Iu, H.H.C. Constructing Multiscroll Memristive Neural Network with Local Activity Memristor and Application in Image Encryption. IEEE Trans. Cybern. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, C.; Lin, H.; Sun, Y. A memristive spiking neural network circuit with selective supervised attention algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 2604–2617. [Google Scholar] [CrossRef]
- Lai, Q.; Wan, Z.; Zhang, H.; Chen, G. Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 7824–7837. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Lei, T.; Yang, Y.; Chen, G. Offset Boosting-Entangled Complex Dynamics in the Memristive Rulkov Neuron. IEEE Trans. Ind. Electron. 2023, 71, 9569–9579. [Google Scholar] [CrossRef]
- Bao, B.; Tang, H.; Su, Y.; Bao, H.; Chen, M.; Xu, Q. Two-Dimensional Discrete Bi-Neuron Hopfield Neural Network with Polyhedral Hyperchaos. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 1–12. [Google Scholar] [CrossRef]
- Vijay, S.D.; Thamilmaran, K.; Ahamed, A.I. Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model. Nonlinear Dyn. 2023, 111, 789–799. [Google Scholar] [CrossRef]
- Innocenti, G.; Morelli, A.; Genesio, R.; Torcini, A. Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 043128. [Google Scholar] [CrossRef] [PubMed]
- Usha, K.; Subha, P.A. Hindmarsh-Rose neuron model with memristors. Biosystems 2019, 178, 1–9. [Google Scholar]
- Sakakibara, A.; Hatanaka, Y. Neuronal polarization in the developing cerebral cortex. Front. Neurosci. 2015, 9, 116. [Google Scholar] [CrossRef]
- Kim, C.M.; Nykamp, D.Q. The influence of depolarization block on seizure-like activity in networks of excitatory and inhibitory neurons. J. Comput. Neurosci. 2017, 43, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.D.; Muqeem, T.; Zhi, L.; Tymanskyj, S.R.; Covarrubias, M. Tunable action potential repolarization governed by Kv3. 4 channels in dorsal root ganglion neurons. J. Neurosci. 2022, 42, 8647–8657. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Xiao, C.; Fraser, S.E.; Lester, H.A.; Koos, D.S. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: Spontaneous firing, sodium conductance, and hyperpolarization-activated currents. J. Neurophysiol. 2012, 108, 1318–1334. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, G.; Marco, M.D.; Tesi, A.; Forti, M. Memristor circuits for simulating neuron spiking and burst phenomena. Front. Neurosci. 2021, 15, 681035. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, Y.; Lei, T.; Li, R.; Xu, Y. Two Independent Offset Controllers in a Three-Dimensional Chaotic System. Int. J. Bifurc. Chaos 2024, 34, 2450008. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, J.; Wang, X.; Zeng, Z. Multi-scroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 011101. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandhan, G.; Natiq, H.; Merrikhi, Y.; Rajagopal, K.; Jafari, S. Dynamical analysis and synchronization of a new memristive Chialvo neuron model. Electronics 2023, 12, 545. [Google Scholar] [CrossRef]
- Eagleman, D.M. Visual illusions and neurobiology. Nat. Rev. Neurosci. 2001, 2, 920–926. [Google Scholar] [CrossRef]
- Li, C.; Lu, T.; Chen, G.; Xing, H. Doubling the coexisting attractors. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 051102. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Díaz-Muñoz, J.D.; González-Zapata, A.M.; Li, R.; León-Salas, W.D.; Fernández, F.V.; Guillén-Fernández, O.; Cruz-Vega, I. Chaotic image encryption using hopfield and hindmarsh–rose neurons implemented on FPGA. Sensors 2020, 20, 1326. [Google Scholar] [CrossRef]
- Yildirim, M. DNA encoding for RGB image encryption with memristor based neuron model and chaos phenomenon. Microelectron. J. 2020, 104, 104878. [Google Scholar] [CrossRef]
- Hindmarsh, J.L.; Rose, R.M. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1984, 221, 87–102. [Google Scholar]
- Yang, F.; Ma, J. Creation of memristive synapse connection to neurons for keeping energy balance. Pramana 2023, 97, 55. [Google Scholar] [CrossRef]
- Yang, F.; An, X. A new discrete chaotic map application in image encryption algorithm. Phys. Scr. 2022, 97, 035202. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Ma, J. An adaptive synchronization approach in a network composed of four neurons with energy diversity. Indian J. Phys. 2023, 97, 2125–2137. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, R.; Liu, J.; Qiu, S.; Cao, Y. An efficient and self-adapting colour-image encryption algorithm based on chaos and interactions among multiple layers. Multimed. Tools Appl. 2018, 77, 26191–26217. [Google Scholar] [CrossRef]
- Wang, X.; Guan, N.; Liu, P. A selective image encryption algorithm based on a chaotic model using modular sine arithmetic. Optik 2022, 258, 168955. [Google Scholar] [CrossRef]
- Zang, H.; Tai, M.; Wei, X. Image encryption schemes based on a class of uniformly distributed chaotic systems. Mathematics 2022, 10, 1027. [Google Scholar] [CrossRef]
- Zhu, S.; Deng, X.; Zhang, W.; Zhu, C. Image encryption scheme based on newly designed chaotic map and parallel DNA coding. Mathematics 2023, 11, 231. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J. Parallel multi-image encryption based on cross-plane DNA manipulation and a novel 2D chaotic system. Vis. Comput. 2024. [Google Scholar] [CrossRef]
Regimes | Range of f | Attractor |
---|---|---|
Memristor Synapse | 0 < f < 0.84 | period-1 |
0.84 < f < 2 | chaotic | |
Resistor Synapse | 2 < f < 2.05 | chaotic |
2.05 < f < 2.23 | period-4 | |
2.23 < f < 3.15 | period-2 | |
f > 3.15 | period-1 |
DNA | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
A | 00 | 00 | 11 | 11 | 01 | 10 | 01 | 10 |
T | 11 | 11 | 00 | 00 | 10 | 01 | 10 | 01 |
G | 10 | 01 | 10 | 01 | 00 | 00 | 11 | 11 |
C | 01 | 10 | 01 | 10 | 11 | 11 | 00 | 00 |
Secret Key | x0 | y0 | z0 | M0 | N0 | xx0 | xx1 | ||
---|---|---|---|---|---|---|---|---|---|
Value | 3.9999 | 0.5764 | 0.5498 | 0.4307 | 0.5847 | 0 | 0 | 0.5908 | 0.5913 |
Image Size (dpi) | 128 × 128 | 256 × 256 | 512 × 512 | 1024 × 1024 |
---|---|---|---|---|
Encryption Time (s) | 0.50652 | 0.66031 | 1.1726 | 3.5201 |
Encryption Algorithm | Image Size (dpi) | Encryption Time (s) |
---|---|---|
[38] | 512 × 512 | 1.8876 |
[39] | 512 × 512 | 1.3105 |
[40] | 512 × 512 | 3.893 |
This work | 512 × 512 | 1.1726 |
No. | Statistical Test Terms | PRNG Generated by x | PRNG Generated by y | PRNG Generated by z | |||
---|---|---|---|---|---|---|---|
Prop | p-Value | Prop | p-Value | Prop | p-Value | ||
01 | Frequency | 0.99 | 0.906069 | 1 | 0.448424 | 0.98 | 0.056069 |
02 | Block frequency | 0.96 | 0.654467 | 0.97 | 0.221029 | 0.96 | 0.152754 |
03 | Cumulative sums | 0.99 | 0.731886 | 1 | 0.599693 | 0.99 | 0.715679 |
04 | Runs | 0.99 | 0.363593 | 0.99 | 0.632955 | 1 | 0.089843 |
05 | Longest run | 1 | 0.433590 | 0.99 | 0.911413 | 0.99 | 0.542228 |
06 | Rank | 0.98 | 0.522955 | 0.98 | 0.108791 | 0.98 | 0.221154 |
07 | FFT | 0.98 | 0.049346 | 0.99 | 0.122325 | 0.98 | 0.858002 |
08 | Non-overlapping template | 1 | 0.983453 | 1 | 0.122325 | 1 | 0.948298 |
09 | Overlapping template | 0.98 | 0.641284 | 0.99 | 0.058984 | 1 | 0.331408 |
10 | Universal | 1 | 0.287712 | 1 | 0.201568 | 1 | 0.215248 |
11 | Approximate entropy | 0.96 | 0.232771 | 0.99 | 0.151622 | 0.97 | 0.125698 |
12 | Random excursions | 1 | 0.804337 | 1 | 0.834308 | 1 | 0.671779 |
13 | Random excursions variant | 1 | 0.804337 | 1 | 0.534146 | 1 | 0.931952 |
14 | Serial | 0.98 | 0.437754 | 0.98 | 0.051942 | 0.97 | 0.112698 |
15 | Linear complexity | 0.99 | 0.307077 | 0.99 | 0.241741 | 0.99 | 0.779188 |
Test Suite | Number of Tests | Test Results |
---|---|---|
SmallCrush | 15 | 15/15 |
Crush | 144 | 140/144 |
BigCrush | 160 | 152/160 |
Alphabit | 17 | 17/17 |
Rabbit | 40 | 39/40 |
PseudoDIEHARD | 126 | 124/126 |
FIPS-140-2 | 16 | 16/16 |
Channel | The Original Image | The Encrypted Image |
---|---|---|
Channel R | 7.2532 | 7.9995 |
Channel G | 7.2442 | 7.9996 |
Channel B | 7.2649 | 7.9995 |
Encryption Algorithm | Channel R | Channel G | Channel B |
---|---|---|---|
[39] | 7.9993 | 7.9993 | 7.9993 |
[41] | 7.9992 | 7.9993 | 7.9992 |
[42] | 7.9994 | 7.9994 | 7.9994 |
This work | 7.9995 | 7.9996 | 7.9995 |
Image | Channel | Horizontal Correlation | Vertical Correlation | Diagonal Correlation |
---|---|---|---|---|
Original image | R | 0.88269 | 0.88049 | 0.82386 |
G | 0.87064 | 0.86952 | 0.80557 | |
B | 0.88637 | 0.8869 | 0.83126 | |
Encrypted image | R | 0.0075872 | −0.0033409 | −0.012801 |
G | 0.0064057 | 0.0042039 | −0.022798 | |
B | 0.0045693 | −0.00096852 | −0.0071015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Li, C.; Li, Y.; Lei, T.; Fu, H. Neural Chaotic Oscillation: Memristive Feedback, Symmetrization, and Its Application in Image Encryption. Electronics 2024, 13, 2138. https://doi.org/10.3390/electronics13112138
Huang K, Li C, Li Y, Lei T, Fu H. Neural Chaotic Oscillation: Memristive Feedback, Symmetrization, and Its Application in Image Encryption. Electronics. 2024; 13(11):2138. https://doi.org/10.3390/electronics13112138
Chicago/Turabian StyleHuang, Keyu, Chunbiao Li, Yongxin Li, Tengfei Lei, and Haiyan Fu. 2024. "Neural Chaotic Oscillation: Memristive Feedback, Symmetrization, and Its Application in Image Encryption" Electronics 13, no. 11: 2138. https://doi.org/10.3390/electronics13112138
APA StyleHuang, K., Li, C., Li, Y., Lei, T., & Fu, H. (2024). Neural Chaotic Oscillation: Memristive Feedback, Symmetrization, and Its Application in Image Encryption. Electronics, 13(11), 2138. https://doi.org/10.3390/electronics13112138