Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band
Abstract
:1. Introduction
2. Design of the Unit Cell
3. Design of the Waveguide and Waveguide Transition Section
4. The 1 × 3-Unit Cell Inside the Waveguide and Its Performance
5. Determination of Sensing Amount from the 1 × 3 Unit Cell Array Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 6, 1201–1221. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh. Technol. Mag. 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, C.; Xu, S. 6G: Connecting everything by 1000 times price reduction. IEEE Open J. Veh. Technol. 2020, 1, 107–115. [Google Scholar] [CrossRef]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.; Han, C.; Di Renzo, M. Learning-based prediction, rendering and transmission for interactive virtual reality in RIS-assisted terahertz networks. IEEE J. Sel. Areas Commun. 2021, 40, 710–724. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Konstantin, K. Information-centric massive IoT-based ubiquitous connected VR/AR in 6G: A proposed caching consensus approach. IEEE Internet Things J. 2020, 8, 5172–5184. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, S.J.; Kim, M.A.; Lee, M.J.; Lim, S.C.; Cho, K.W. Development of a digital twin pipeline for interactive scientific simulation and mixed reality visualization. IEEE Access 2023, 11, 100907–100918. [Google Scholar] [CrossRef]
- Rana, B.; Shim, J.Y.; Chung, J.Y. An implantable antenna with broadside radiation for a brain–machine interface. IEEE Sens. J. 2019, 19, 9200–9205. [Google Scholar] [CrossRef]
- Fan, S.; Wu, Y.; Han, C.; Wang, X. SIABR: A structured intra-attention bidirectional recurrent deep learning method for ultra-accurate terahertz indoor localization. IEEE J. Sel. Areas Commun. 2021, 39, 2226–2240. [Google Scholar] [CrossRef]
- Shang, B.; Shafin, R.; Liu, L. UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS). IEEE Wirel. Commun. 2021, 28, 156–163. [Google Scholar] [CrossRef]
- Chen, X.; Leng, S.; He, J.; Zhou, L. Deep-learning-based intelligent intervehicle distance control for 6G-enabled cooperative autonomous driving. IEEE Internet Things J. 2021, 8, 15180–15190. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The internet of things for health care: A comprehensive survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Yang, J.; Kwon, Y.; Kim, D. Regional smart city development focus: The South Korean national strategic smart city program. IEEE Access 2021, 9, 7193–7210. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Rana, B.; Cho, S.-S.; Hong, I.-P. Review paper on hardware of reconfigurable intelligent surfaces. IEEE Access 2023, 11, 29614–29634. [Google Scholar] [CrossRef]
- Jeong, J.; Oh, J.H.; Lee, S.Y.; Park, Y.; Wi, S.-H. An improved path-loss model for reconfigurable-intelligent-surface-aided wireless communications and experimental validation. IEEE Access 2022, 10, 98065–98078. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications. IEEE Trans. Microw. Theory Technol. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Kuai, L.; Chen, J.; Jiang, Z.H.; Yu, C.; Guo, C.; Yu, Y.; Zhou, H.-X.; Hong, W. A N260 band 64 channel millimeter wave full-digital multi-beam array for 5G massive MIMO applications. IEEE Access 2020, 8, 47640–47653. [Google Scholar] [CrossRef]
- Wei, Z.; Qu, H.; Wang, Y.; Yuan, X.; Wu, H.; Du, Y.; Han, K.; Zhang, N.; Feng, Z. Integrated sensing and communication signals towards 5G-A and 6G: A survey. IEEE Internet Things 2023, 10, 11068–11092. [Google Scholar] [CrossRef]
- Chepuri, S.P.; Shlezinger, N.; Liu, F.; Alexandropoulos, G.C.; Buzzi, S.; Eldar, Y.C. Integrated sensing and communications with reconfigurable intelligent surfaces: From signal modeling to processing. IEEE Signal Process. Mag. 2023, 40, 41–62. [Google Scholar] [CrossRef]
- Renzo, M.D.; Debbah, M.; Phan-Huy, D.-T.; Zappone, A.; Alouini, M.-S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef]
- del Hougne, P.; Imani, M.F.; Fink, M.; Smith, D.R.; Lerosey, G. Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping. Phys. Rev. Lett. 2018, 121, 063901. [Google Scholar] [CrossRef] [PubMed]
- Saigre-Tardif, C.; del Hougne, P. Self-adaptive riss beyond free space: Convergence of localization, sensing, and communication under rich-scattering conditions. IEEE Wirel. Commun. 2023, 30, 24–30. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Hwang, M.; Youn, Y.; Chang, S.; Kim, D.; Lee, C.; An, D.; Hong, W. Sensor-integrated RIS unit element featuring mutual coupling reduction. In Proceedings of the 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Busan, Republic of Korea, 29–31 August 2022; pp. 159–160. [Google Scholar]
- Alamzadeh, I.; Alexandropoulos, G.C.; Shlezinger, N.; Imani, M.F. A reconfigurable intelligent surface with integrated sensing capability. Sci. Rep. 2021, 11, 20737. [Google Scholar] [CrossRef] [PubMed]
- Alamzadeh, I.; Imani, M.F. Sensing and reconfigurable reflection of electromagnetic waves from a metasurface with sparse sensing elements. IEEE Access 2022, 10, 105954–105965. [Google Scholar] [CrossRef]
- Hwang, M.; An, D.; Chang, S.; Youn, Y.; Kim, D.; Lee, C.; Hong, W. Demonstration of millimeter-wave reconfigurable intelligent surface (RIS) with built-in sensors for automatic tracking of direction-of-arrival (DOA). IEEE Sens. Lett. 2023, 7, 7003704. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, R. Enhancing wireless sensing via a target-mounted intelligent reflecting surface. Natl. Sci. Rev. 2023, 10, nwad150. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, M.; Luo, H.; Liu, Q.; Swindlehurst, A.L. Integrated sensing and communication with reconfigurable intelligent surfaces: Opportunities, applications, and future directions. IEEE Wirel. Commun. 2023, 30, 50–57. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Renzo, M.D.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Yang, X.; Wen, E.; Bharadia, D.; Sievenpiper, D.F. Multifunctional metasurface: Simultaneous beam steering, polarization conversion and phase offset. IEEE Trans. Antennas Propag. 2024. [Google Scholar] [CrossRef]
Ref. | Tunning Mechanism | Frequency | Comments |
---|---|---|---|
28 | Varactor diode | 28 GHz | SIW structure was realized to transport the sensing signal |
29 | Varactor diode | 19 GHz | SIW was used for guiding the sampled signal |
30 | Varactor diode | 5.8 GHz | SIW was used to guide the coupled signal |
31 | Varactor diode | 28 GHz | Rotman lens and power detector were used, eliminating the need for expensive RF chains |
Our design | PIN diode | 29 GHz | Nearly 2-bit operation, and thus external circuits are simpler as compared to the varactor diode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, B.; Cho, S.-S.; Hong, I.-P. Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band. Electronics 2024, 13, 1689. https://doi.org/10.3390/electronics13091689
Rana B, Cho S-S, Hong I-P. Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band. Electronics. 2024; 13(9):1689. https://doi.org/10.3390/electronics13091689
Chicago/Turabian StyleRana, Biswarup, Sung-Sil Cho, and Ic-Pyo Hong. 2024. "Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band" Electronics 13, no. 9: 1689. https://doi.org/10.3390/electronics13091689
APA StyleRana, B., Cho, S. -S., & Hong, I. -P. (2024). Characterization of Unit Cells of a Reconfigurable Intelligence Surface Integrated with Sensing Capability at the mmWave Frequency Band. Electronics, 13(9), 1689. https://doi.org/10.3390/electronics13091689