Parallel Algorithm on Multicore Processor and Graphics Processing Unit for the Optimization of Electric Vehicle Recharge Scheduling
Abstract
:1. Introduction
2. Previous Works
3. Materials and Methods
3.1. Problem Formulation
- minimize
- subject to
3.2. Graphics Processing Units
3.3. Particle Swarm Optimization
3.4. Solution Encoding
3.5. Fitness Function
3.6. Parallelization on Multicore CPU Using OpenMP
3.7. Parallelization on GPU Using CUDA
4. Results
4.1. Test 1: Optimizing the Schedule for a 20-EV Parking Lot
4.2. Test 2: Optimizing the Schedule for Larger Parking Lots
4.3. Test 3: Comparison of the Single-Run and Multi-Run PSO
4.4. Test 4: Performance of the Parallel PSO for Multicore CPU Using OpenMP
4.5. Test 5: Performance of the Parallel PSO for GPU Using CUDA
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency (IEA). World Energy Outlook 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 28 March 2024).
- Kalakanti, A.K.; Rao, S. Computational Challenges and Approaches for Electric Vehicles. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Muñoz, A.; Rubio, F. Evaluating genetic algorithms through the approximability hierarchy. J. Comput. Sci. 2021, 53, 101388. [Google Scholar] [CrossRef]
- Amin, A.; Tareen, W.U.K.; Usman, M.; Ali, H.; Bari, I.; Horan, B.; Mekhilef, S.; Asif, M.; Ahmed, S.; Mahmood, A. A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network. Sustainability 2020, 12, 10160. [Google Scholar] [CrossRef]
- Bitencourt, L.D.A.; Borba, B.S.M.C.; Maciel, R.S.; Fortes, M.Z.; Ferreira, V.H. Optimal EV charging and discharging control considering dynamic pricing. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Martinenas, S.; Pedersen, A.B.; Marinelli, M.; Andersen, P.B.; Trreholt, C. Electric vehicle smart charging using dynamic price signal. In Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 17–19 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, P.; Li, J.; Sun, X.; Zheng, W.; Liu, H. Dynamic Pricing at Electric Vehicle Charging Stations for Queueing Delay Reduction. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2565–2566. [Google Scholar] [CrossRef]
- Mierau, M.; Kohrs, R.; Wittwer, C. A distributed approach to the integration of electric vehicles into future smart grids. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Wu, H.; Pang, G.K.-H.; Choy, K.L.; Lam, H.Y. Dynamic resource allocation for parking lot electric vehicle recharging using heuristic fuzzy particle swarm optimization algorithm. Appl. Soft Comput. 2018, 71, 538–552. [Google Scholar] [CrossRef]
- Nejati, S.A.; Chong, B.; Alinejad, M.; Abbasi, S. Optimal scheduling of electric vehicles charging and discharging in a smart parking-lot. In Proceedings of the 2021 56th International Universities Power Engineering Conference (UPEC), Middlesbrough, UK, 31 August–3 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zheng, K.; Teng, S.; Zhao, Y. Research on Optimal Scheduling Strategy for Electric Vehicle Charging and Discharging Based on Time-of-Use Electricity Price. In Proceedings of the 2023 6th Asia Conference on Energy and Electrical Engineering (ACEEE), Chengdu, China, 21–23 July 2023; pp. 519–524. [Google Scholar] [CrossRef]
- Tan, M.; Zhang, Z.; Ren, Y.; Richard, I.; Zhang, Y. Multi-Agent System for Electric Vehicle Charging Scheduling in Parking Lots. Complex Syst. Model. Simul. 2023, 3, 129–142. [Google Scholar] [CrossRef]
- Abdullah-Al-Nahid, S.; Aziz, T. A novel day ahead charging scheme for electric vehicles with time of use-based prioritization supported by genetic algorithm. In Proceedings of the 2022 Global Energy Conference (GEC), Batman, Turkey, 26–29 October 2022; pp. 19–24. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Loscos, D.; Martí-Oliet, N.; Rodríguez, I. Generalization and completeness of stochastic local search algorithms. Swarm Evol. Comput. 2022, 68, 100982. [Google Scholar] [CrossRef]
- Kizil, A.; Karabulut, K. Effects of Parameters of an Island Model Parallel Genetic Algorithm for the Quadratic Assignment Problem. In Proceedings of the 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), Toyama, Japan, 7–11 July 2019; pp. 444–449. [Google Scholar] [CrossRef]
- Roberge, V.; Labonté, G.; Tarbouchi, M. Minimizing Fuel Consumption for Surveillance Unmanned Aerial Vehicles Using Parallel Particle Swarm Optimization. Sensors 2024, 24, 408. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, S.; Sharma, H.; Satapathy, S.C.; Deep, K.; Bansal, J.C. A Survey on Parallel Particle Swarm Optimization Algorithms. Arab. J. Sci. Eng. 2019, 44, 2899–2923. [Google Scholar] [CrossRef]
- Roberge, V.; Tarbouchi, M.; Labonté, G. Fast Genetic Algorithm Path Planner for Fixed-Wing Military UAV Using GPU. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2105–2117. [Google Scholar] [CrossRef]
- Ozdemir, M. Particle Swarm Optimization for Continuous Function Optimization Problems. Int. J. Appl. Math. Electron. Comput. 2017, 5, 47–52. [Google Scholar] [CrossRef]
- Chen, C.-R.; Chen, Y.-S.; Lin, T.-C. Optimal Charging Scheduling for Electric Vehicle in Parking Lot with Renewable Energy System. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1684–1688. [Google Scholar] [CrossRef]
- Amiri, S.S.; Jadid, S. Optimal charging schedule of electric vehicles at battery swapping stations in a smart distribution network. In Proceedings of the 2017 Smart Grid Conference (SGC), Tehran, Iran, 20–21 December 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Wahid, S.S.A.; Mohamed Kamari, N.A.; Mohd Zaman, M.H.; Zulkifley, M.A. Optimal Scheduling of Plug-in Electric Vehicles Using Binary Gravitational Search Algorithm with A Suitable Decision Function. In Proceedings of the 2022 IEEE 20th Student Conference on Research and Development (SCOReD), Bangi, Malaysia, 8–9 November 2022; pp. 96–100. [Google Scholar] [CrossRef]
- Pan, K.; Liang, C.-D.; Lu, M. Optimal scheduling of electric vehicle ordered charging and discharging based on improved gravitational search and particle swarm optimization algorithm. Int. J. Electr. Power Energy Syst. 2024, 157, 109766. [Google Scholar] [CrossRef]
- Rho, S.; Chae, M.; Won, D. Forecast-based Optimal Operation of EV Charging Station with PV Considering Charging Demand and Distributed System. In Proceedings of the 2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. IEEE Access 2018, 6, 21020–21031. [Google Scholar] [CrossRef]
- Wu, H.; Pang, G.K.H.; Choy, K.L.; Lam, H.Y. A scheduling and control system for electric vehicle charging at parking lot. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast, Australia, 17–20 December 2017; pp. 13–18. [Google Scholar] [CrossRef]
- Abdullah, E.A.; Ahmed Saleh, I.; Al Saif, O.I. Performance Evaluation of Parallel Particle Swarm Optimization for Multicore Environment. In Proceedings of the 2018 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq, 9–11 October 2018; pp. 81–86. [Google Scholar] [CrossRef]
- Roberge, V.; Tarbouchi, M.; Labonté, G. Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning. IEEE Trans. Ind. Inform. 2013, 9, 132–141. [Google Scholar] [CrossRef]
- Roberge, V.; Tarbouchi, M.; Allaire, F. Parallel Hybrid Metaheuristic on Shared Memory System for Real-Time UAV Path Planning. Int. J. Comput. Intell. Appl. 2014, 13, 1450008-1–1450008-16. [Google Scholar] [CrossRef]
- Abdelatti, M.; Sodhi, M.; Sendag, R. A Multi-GPU Parallel Genetic Algorithm For Large-Scale Vehicle Routing Problems. In Proceedings of the 2022 IEEE High Performance Extreme Computing Conference (HPEC), Virtual, 19–23 September 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Benaini, A.; Berrajaa, A. Parallel genetic algorithm on GPU for the robust uncapacitated single allocation p-hub median problem with discrete scenarios. In Proceedings of the 2020 5th International Conference on Logistics Operations Management (GOL), Rabat, Morocco, 28–30 October 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Beni, M.S.; Sojoodi, A.H.; Khunjush, F. A GPU-Enabled Extension for Apache Ignite to Facilitate Running Genetic Algorithms. In Proceedings of the 2020 20th International Symposium on Computer Architecture and Digital Systems (CADS), Rasht, Iran, 19–20 August 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Ohira, R.; Islam, M.S. GPU Accelerated Genetic Algorithm with Sequence-based Clustering for Ordered Problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- CUDA Toolkit. NVIDIA Developer. Available online: https://developer.nvidia.com/cuda-toolkit (accessed on 3 April 2024).
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- The OpenMP. API Specification for Parallel Programming. OpenMP. Available online: https://www.openmp.org/ (accessed on 26 March 2024).
- Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Electricity Cost | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
EV | Arrival Time | Departure Time | Demand (kWh) | EV | Arrival Time | Departure Time | Demand (kWh) |
---|---|---|---|---|---|---|---|
1 | 1 | 3 | 18 | 11 | 3 | 8 | 26 |
2 | 3 | 5 | 15 | 12 | 2 | 6 | 17 |
3 | 1 | 5 | 25 | 13 | 5 | 8 | 15 |
4 | 2 | 4 | 18 | 14 | 4 | 8 | 16 |
5 | 2 | 3 | 15 | 15 | 3 | 7 | 14 |
6 | 6 | 10 | 22 | 16 | 5 | 8 | 12 |
7 | 7 | 8 | 14 | 17 | 4 | 7 | 16 |
8 | 8 | 10 | 16 | 18 | 5 | 9 | 19 |
9 | 7 | 8 | 10 | 19 | 1 | 10 | 28 |
10 | 6 | 9 | 20 | 20 | 1 | 5 | 16 |
PSO Parameters | Value |
---|---|
PSO inertia () | 0.7298 |
PSO personal influence () | 1.4960 |
PSO social influence () | 1.4960 |
Number of particles | 1000 |
Number of iterations (inner loop) | 5000 |
Number of iterations (outer loop) | 10 |
EV | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
EV1 | 9.60 | 8.40 | 0.00 | - | - | - | - | - | - | - | 18.00 |
EV2 | - | - | 0.00 | 7.64 | 7.36 | - | - | - | - | - | 15.00 |
EV3 | 9.60 | 3.88 | 0.00 | 5.70 | 5.83 | - | - | - | - | - | 25.00 |
EV4 | - | 8.45 | 0.00 | 9.55 | - | - | - | - | - | - | 18.00 |
EV5 | - | 9.60 | 5.40 | - | - | - | - | - | - | - | 15.00 |
EV6 | - | - | - | - | - | 4.58 | 2.36 | 0.00 | 5.46 | 9.60 | 22.00 |
EV7 | - | - | - | - | - | - | 9.60 | 4.40 | - | - | 14.00 |
EV8 | - | - | - | - | - | - | - | 0.00 | 6.40 | 9.60 | 16.00 |
EV9 | - | - | - | - | - | - | 9.60 | 0.40 | - | - | 10.00 |
EV10 | - | - | - | - | - | 7.24 | 7.10 | 0.00 | 5.65 | - | 20.00 |
EV11 | - | - | 0.00 | 3.83 | 8.01 | 7.73 | 6.42 | 0.00 | - | - | 26.00 |
EV12 | - | 1.72 | 0.00 | 3.60 | 5.12 | 6.56 | - | - | - | - | 17.00 |
EV13 | - | - | - | - | 7.47 | 7.53 | 0.00 | 0.00 | - | - | 15.00 |
EV14 | - | - | - | 1.38 | 4.04 | 5.79 | 4.79 | 0.00 | - | - | 16.00 |
EV15 | - | - | 0.00 | 4.31 | 3.00 | 4.13 | 2.56 | - | - | - | 14.00 |
EV16 | - | - | - | - | 4.86 | 2.97 | 4.17 | 0.00 | - | - | 12.00 |
EV17 | - | - | - | 5.73 | 4.02 | 4.73 | 1.52 | - | - | - | 16.00 |
EV18 | - | - | - | - | 5.05 | 5.61 | 5.61 | 0.00 | 2.74 | - | 19.00 |
EV19 | 9.60 | 1.52 | 0.00 | 0.00 | 1.26 | 3.14 | 2.87 | 0.00 | 0.01 | 9.60 | 28.00 |
EV20 | 9.60 | 1.90 | 0.00 | 0.52 | 3.97 | - | - | - | - | - | 16.00 |
Total | 38.40 | 35.47 | 5.40 | 42.26 | 60.00 | 60.00 | 56.60 | 4.80 | 20.26 | 28.80 | 352.00 |
Parking Lot Size (Number of EVs) | Dimension | Best (USD) | Worst (USD) | Median (USD) | Mean (USD) | Standard Deviation (USD) |
---|---|---|---|---|---|---|
20 | 85 | 53.72 | 53.72 | 53.72 | 53.72 | 0.00 |
40 | 171 | 120.29 | 120.71 | 120.30 | 120.36 | 0.10 |
60 | 270 | 174.62 | 176.91 | 175.80 | 175.76 | 0.58 |
80 | 356 | 251.23 | 256.01 | 253.69 | 253.67 | 1.00 |
100 | 394 | 300.97 | 306.87 | 304.45 | 304.35 | 1.30 |
200 | 898 | 692.19 | 716.31 | 706.03 | 705.67 | 4.64 |
300 | 1251 | 969.72 | 999.96 | 989.44 | 988.60 | 6.25 |
400 | 1700 | 1425.02 | 1459.22 | 1444.29 | 1443.87 | 7.21 |
500 | 2099 | 1821.19 | 1859.99 | 1846.07 | 1845.41 | 7.88 |
Parking Lot Size (Number of EVs) | Single-Run PSO | Multi-Run PSO | |||
---|---|---|---|---|---|
Dimension | Mean (USD) | Standard Deviation (USD) | Mean (USD) | Standard Deviation (USD) | |
20 | 85 | 54.10 | 0.44 | 53.72 | 0.00 |
40 | 171 | 121.42 | 0.79 | 120.36 | 0.10 |
60 | 270 | 176.49 | 1.16 | 175.76 | 0.58 |
80 | 356 | 253.80 | 1.38 | 253.67 | 1.00 |
100 | 394 | 306.30 | 3.70 | 304.35 | 1.30 |
200 | 898 | 708.01 | 6.86 | 705.67 | 4.64 |
300 | 1251 | 998.68 | 11.64 | 988.60 | 6.25 |
400 | 1700 | 1439.02 | 13.28 | 1443.87 | 7.21 |
500 | 2099 | 1841.24 | 11.13 | 1845.41 | 7.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberge, V.; Brooks, K.; Tarbouchi, M. Parallel Algorithm on Multicore Processor and Graphics Processing Unit for the Optimization of Electric Vehicle Recharge Scheduling. Electronics 2024, 13, 1783. https://doi.org/10.3390/electronics13091783
Roberge V, Brooks K, Tarbouchi M. Parallel Algorithm on Multicore Processor and Graphics Processing Unit for the Optimization of Electric Vehicle Recharge Scheduling. Electronics. 2024; 13(9):1783. https://doi.org/10.3390/electronics13091783
Chicago/Turabian StyleRoberge, Vincent, Katerina Brooks, and Mohammed Tarbouchi. 2024. "Parallel Algorithm on Multicore Processor and Graphics Processing Unit for the Optimization of Electric Vehicle Recharge Scheduling" Electronics 13, no. 9: 1783. https://doi.org/10.3390/electronics13091783
APA StyleRoberge, V., Brooks, K., & Tarbouchi, M. (2024). Parallel Algorithm on Multicore Processor and Graphics Processing Unit for the Optimization of Electric Vehicle Recharge Scheduling. Electronics, 13(9), 1783. https://doi.org/10.3390/electronics13091783