Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction
Abstract
:1. Introduction
2. Gesture Recognition Principles
2.1. Gesture Recognition System Process
2.2. Principle of Millimeter-Wave Radar
2.2.1. Radar Working Principle
2.2.2. Radar Detection Principle
2.3. Point Cloud Signal Processing
2.3.1. Radar Signal Processing Procedure
2.3.2. Radar Parameters
2.4. Point Cloud Gesture Recognition Model
2.4.1. SequentialPointNet Network
2.4.2. Initial Attention Mechanism Replacement
2.4.3. Multiscale Feature Extraction Module
2.4.4. Separable MLP
3. Experimental Verification
3.1. Dataset Construction
3.2. Network Training
3.3. Model Performance Analysis
3.4. Ablation Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Ren, Y.; Liu, Y.; Wang, Z.; Wang, X. Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar MicroDoppler Signatures. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4905–4909. [Google Scholar]
- De Crescenzio, F.; Fantini, M.; Persiani, F.; Di Stefano, L.; Azzari, P.; Salti, S. Augmented Reality for Aircraft Maintenance Training and Operations Support. IEEE Comput. Graph. Appl. 2011, 31, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Geng, K.; Yin, G. Using Deep Learning in Infrared Images to Enable Human Gesture Recognition for Autonomous Vehicles. IEEE Access 2020, 8, 88227–88240. [Google Scholar] [CrossRef]
- Li, A.; Bodanese, E.; Poslad, S.; Hou, T.; Wu, K.; Luo, F. A Trajectory-Based Gesture Recognition in Smart Homes Based on the Ultrawideband Communication System. IEEE Internet Things J. 2022, 9, 22861–22873. [Google Scholar] [CrossRef]
- Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A Continuous Hand Gestures Recognition Technique for Human-Machine Interaction Using Accelerometer and Gyroscope Sensors. IEEE Sens. J. 2016, 16, 6425–6432. [Google Scholar] [CrossRef]
- Rocamora, J.M.; Wang-Hei Ho, I.; Mak, W.; Lau, A.P. Survey of CSI Fingerprinting-based Indoor Positioning and Mobility Tracking Systems. IET Signal Process. 2020, 14, 407–419. [Google Scholar] [CrossRef]
- Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-Time Human Pose Recognition in Parts from Single Depth Images. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: New York, NY, USA, 2011; pp. 1297–1304. [Google Scholar]
- Nishida, N.; Nakayama, H. Multimodal Gesture Recognition Using Multi-Stream Recurrent Neural Network. In Proceedings of the Image and Video Technology: 7th Pacific-Rim Symposium, PSIVT 2015, Auckland, New Zealand, 25–27 November 2015; Springer International Publishing: Cham, Switzerland, 2016; Volume 9431, pp. 682–694. [Google Scholar]
- Yang, M.; Zhu, H.; Zhu, R.; Wu, F.; Yin, L.; Yang, Y. WiTransformer: A Novel Robust Gesture Recognition Sensing Model with WiFi. Sensors 2023, 23, 2612. [Google Scholar] [CrossRef] [PubMed]
- Gatteschi, V.; Lamberti, F.; Montuschi, P.; Sanna, A. Semantics-Based Intelligent Human-Computer Interaction. IEEE Intell. Syst. 2016, 31, 11–21. [Google Scholar] [CrossRef]
- Kim, Y.; Toomajian, B. Hand Gesture Recognition Using Micro-Doppler Signatures with Convolutional Neural Network. IEEE Access 2016, 4, 7125–7130. [Google Scholar] [CrossRef]
- Malysa, G.; Wang, D.; Netsch, L.; Ali, M. Hidden Markov Model-Based Gesture Recognition with FMCW Radar. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; IEEE: Washington, DC, USA, 2016; pp. 1017–1021. [Google Scholar]
- De Miguel, K.; Brunete, A.; Hernando, M.; Gambao, E. Home Camera-Based Fall Detection System for the Elderly. Sensors 2017, 17, 2864. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ma, K.; Fu, H.; Wang, K.; Meng, F. Recent Progress of Silicon-Based Millimeter-Wave SoCs for Short-Range Radar Imaging and Sensing. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2667–2671. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Ma, C.; Zhu, C.; Gu, Z.; Lv, Q.; Zhang, B.; Li, C.; Ran, L. Doppler Cardiogram: A Remote Detection of Human Heart Activities. IEEE Trans. Microw. Theory Tech. 2020, 68, 1132–1141. [Google Scholar] [CrossRef]
- Ko, M.M.; Moriyama, T. Noncontact Monitoring of Respiration and Heartbeat Based on Two-Wave Model Using a Millimeter-Wave MIMO FM-CW Radar. Electronics 2024, 13, 4308. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Radar-Based Monitoring of the Worker Activities by Exploiting Range-Doppler and Micro-Doppler Signatures. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021; pp. 412–416. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; Ritchie, M.; Fioranelli, F.; Griffiths, H. Dynamic Hand Gesture Classification Based on Radar Micro-Doppler Signatures. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; IEEE: Guangzhou, China, 2016; pp. 1–4. [Google Scholar]
- Wei, H.; Li, Z.; Galvan, A.D.; Su, Z.; Zhang, X.; Pahlavan, K.; Solovey, E.T. IndexPen: Two-Finger Text Input with Millimeter-Wave Radar. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 79. [Google Scholar] [CrossRef]
- Tian, Y.; Cao, Z.; Deng, Y.; Li, J.; Cui, Z. Feature Reconstruction for Multi-Hand Gesture Signals Separation Based on Enhanced Music Using Millimeter-Wave Radar. In Proceedings of the IGARSS 2024–2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 7440–7443. [Google Scholar]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Honolulu, HI, USA, 2017; pp. 77–85. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 5105–5114. [Google Scholar]
- Wang, Y.; Xiao, Y.; Xiong, F.; Jiang, W.; Cao, Z.; Zhou, J.T.; Yuan, J. 3DV: 3D Dynamic Voxel for Action Recognition in Depth Video. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; IEEE: Seattle, WA, USA, 2020; pp. 508–517. [Google Scholar]
- Fan, H.; Yang, Y.; Kankanhalli, M. Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Nashville, TN, USA, 2021; pp. 14199–14208. [Google Scholar]
- Li, X.; Huang, Q.; Wang, Z.; Yang, T.; Hou, Z.; Miao, Z. Real-Time 3-D Human Action Recognition Based on Hyperpoint Sequence. IEEE Trans. Ind. Inform. 2023, 19, 8933–8942. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
Parameter | Value |
---|---|
Initial Frequency (GHz) | 77.000 |
Frequency Modulation Slope (MHz/μs) | 58.545 |
Effective Bandwidth (GHz) | 2.9915 |
Chirp Time (μs) | 55 |
Parameter | Value |
---|---|
Number of Sample Points | 512 |
Sampling Rate (ksps) | 10,000 |
Number of Chirps | 64 |
Number of Antennas | 16 |
Frame Interval Time (ms) | 50 |
Training–Testing Split Ratio | Accuracy (%) |
---|---|
5:5 | 82.8 |
6:4 | 91.6 |
7:3 | 96.3 |
Model | Accuracy (%) |
---|---|
PointNet++ | 70.5 |
meteorNet | 83.7 |
P4Transformer | 95.0 |
SequentialPointNet | 96.3 |
MSFE-GAM-SPointNet(ours) | 99.5 |
Scheme Number | GAM | Multiscale Feature Extraction Module | Separable MLP |
---|---|---|---|
1 | |||
2 | √ | ||
3 | √ | √ | |
4 | √ | √ | √ |
Scheme Number | Accuracy (%) |
---|---|
1 | 96.3 |
2 | 98.1 |
3 | 99.2 |
4 | 99.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Guo, Z.; Han, Z. Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction. Electronics 2025, 14, 371. https://doi.org/10.3390/electronics14020371
Li W, Guo Z, Han Z. Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction. Electronics. 2025; 14(2):371. https://doi.org/10.3390/electronics14020371
Chicago/Turabian StyleLi, Wei, Zhiqi Guo, and Zhuangzhi Han. 2025. "Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction" Electronics 14, no. 2: 371. https://doi.org/10.3390/electronics14020371
APA StyleLi, W., Guo, Z., & Han, Z. (2025). Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction. Electronics, 14(2), 371. https://doi.org/10.3390/electronics14020371