A Comparative Study of Incremental ΔΣ Analog-to-Digital Converter Architectures with Extended Order and Resolution
Abstract
:1. Introduction
2. Incremental Multi-Stage/Step Architectures
2.1. MASH-QE
2.2. MASH-LI
2.3. Extended Counting EC
2.4. Reconstruction Filters and Noise Penalty
3. Ideal Performance of MASH and EC IDSM
3.1. Multi-Bit Quantization in MASH-QE, MASH-LI, and EC
3.1.1. Including Swing Limitation
3.1.2. Inter-Stage Gain
3.1.3. Simulation over OSR
3.2. Single-Bit Quantization in MASH-QE, MASH-LI, and EC
3.2.1. Similarities and Differences Between EC and MASH-LI
3.2.2. Differences Between MASH-QE and MASH-LI
4. Non-Idealities: Mismatch and DC Gain
4.1. Loop-Filter Coefficient Mismatch
4.1.1. 2-0 MASH/EC
4.1.2. 2-1 MASH/EC
4.2. Integrator Finite-DC Gain
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavan, S.; Schreier, R.; Temes, G.C. Understanding Delta-Sigma Data Converters, 2nd ed.; Wiley-IEEE Press, 2017. [Google Scholar]
- Márkus, J. Higher-Order Incremental Delta-SigmaAnalog-to-Digital Converters. Ph.D. Thesis, Budapest University of Technology and Economics, Budapest, Hungary, 2005. [Google Scholar]
- Verreault, A.; Cicek, P.V.; Robichaud, A. Oversampling ADC: A Review of Recent Design Trends. IEEE Access 2024, 12, 121753–121779. [Google Scholar] [CrossRef]
- Chen, C.H.; Zhang, Y.; Temes, G.C. History, present state-of-art and future of incremental ADCs. In Proceedings of the ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, 12–15 September 2016; pp. 83–86. [Google Scholar] [CrossRef]
- Huang, J.S.; Kuo, S.C.; Chen, C.H. A Multistep Multistage Fifth-Order Incremental Delta Sigma Analog-to-Digital Converter for Sensor Interfaces. IEEE J. Solid-State Circuits 2023, 58, 2733–2744. [Google Scholar] [CrossRef]
- Markus, J.; Deval, P.; Quiquempoix, V.; Silva, J.; Temes, G.C. Incremental Delta-Sigma Structures for DC Measurement: An Overview. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 10–13 September 2006; pp. 41–48. [Google Scholar] [CrossRef]
- Hayashi, T.; Inabe, Y.; Uchimura, K.; Kimura, T. A multistage delta-sigma modulator without double integration loop. In Proceedings of the 1986 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, Anaheim, CA, USA, 19–21 February 1986; pp. 182–183. [Google Scholar] [CrossRef]
- Robert, J.; Deval, P. A second-order high-resolution incremental A/D converter with offset and charge injection compensation. IEEE J. Solid-State Circuits 1988, 23, 736–741. [Google Scholar] [CrossRef]
- Matsuya, Y.; Uchimura, K.; Iwata, A.; Kobayashi, T.; Ishikawa, M.; Yoshitome, T. A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping. IEEE J. Solid-State Circuits 1987, 22, 921–929. [Google Scholar] [CrossRef]
- Lin, Y.S.; Chang, S.J.; Wei, C.L. A Noise-shaping SAR Assisted MASH 2-1 Sigma-Delta Modulator. In Proceedings of the 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 10–13 August 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Jing, C.; Li, T.; Gao, B.; Gong, M. A MASH2-2 Sigma Delta Modulator with NTF Zero Optimization Technique. In Proceedings of the 2022 5th International Conference on Communication Engineering and Technology (ICCET), Shanghai, China, 25–27 February 2022; pp. 68–72. [Google Scholar] [CrossRef]
- Jansson, C. A high-resolution, compact, and low-power ADC suitable for array implementation in standard CMOS. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995, 42, 904–912. [Google Scholar] [CrossRef]
- Rombouts, P.; Wilde, W.D.; Weyten, L. A 13.5-b 1.2-V micropower extended counting A/D converter. IEEE J. Solid-State Circuits 2001, 36, 176–183. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Yu, X.; Hung, J.; Lin, L.; Chen, P.; Tan, N.N. A Sub-1 μW 16-Bit Fully Dynamic Zoom ADC Compatible With Free-Running and Incremental Modes Using Residue Feedforward and Extended Counting Techniques. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 522–526. [Google Scholar] [CrossRef]
- Wang, Y.; Dey, S.; He, T.; Shi, L.; Zheng, J.; Kareppagoudr, M.; Zhang, Y.; Sobue, K.; Hamashita, K.; Tomioka, K.; et al. A Hybrid Continuous-Time Incremental and SAR Two-Step ADC with 90.5-dB DR Over 1-MHz BW. IEEE Solid-State Circuits Lett. 2022, 5, 122–125. [Google Scholar] [CrossRef]
- Tao, S.; Rusu, A. A comparative design study of continuous-time incremental sigma-delta ADC architectures. Int. J. Circuit Theory Appl. 2016, 44, 2147–2163. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, C.H.; Chae, Y.; Temes, G.C. Incremental Delta-Sigma ADCs: A Tutorial Review. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4161–4173. [Google Scholar] [CrossRef]
- Wagner, J. On the Optimization of Sigma-Delta ADCs. Ph.D. Thesis, Institue of Microelectronics, University of Ulm, Ulm, Germany, 2021. [Google Scholar]
- Caldwell, T.C.; Johns, D.A. Incremental Data Converters at Low Oversampling Ratios. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 1525–1537. [Google Scholar] [CrossRef]
- Agah, A.; Vleugels, K.; Griffin, P.B.; Ronaghi, M.; Plummer, J.D.; Wooley, B.A. A High-Resolution Low-Power Incremental ADC With Extended Range for Biosensor Arrays. IEEE J. Solid-State Circuits 2010, 45, 1099–1110. [Google Scholar] [CrossRef]
- Kuo, S.C.; Huang, J.S.; Huang, Y.C.; Kao, C.W.; Hsu, C.W.; Chen, C.H. A Multi-Step Incremental Analog-to-Digital Converter With a Single Opamp and Two- Capacitor SAR Extended Counting. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2890–2899. [Google Scholar] [CrossRef]
- Kim, J.; Jung, W.; Lim, S.; Park, Y.; Choi, W.; Kim, Y.; Kang, C.; Shin, J.; Choo, K.; Lee, W.; et al. A 14b extended counting ADC implemented in a 24Mpixel APS-C CMOS image sensor. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; pp. 390–392. [Google Scholar]
- Chen, C.H.; Zhang, Y.; He, T.; Chiang, P.Y.; Temes, G.C. A Micro-Power Two-Step Incremental Analog-to-Digital Converter. IEEE J. Solid-State Circuits 2015, 50, 1796–1808. [Google Scholar] [CrossRef]
- Steensgaard, J.; Zhang, Z.; Yu, W.; Sarhegyi, A.; Lucchese, L.; Kim, D.I.; Temes, G.C. Noise–Power Optimization of Incremental Data Converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 1289–1296. [Google Scholar] [CrossRef]
- Markus, J.; Silva, J.; Temes, G.C. Theory and applications of incremental \Delta\Sigma converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 678–690. [Google Scholar] [CrossRef]
- Ortmanns, M.; Gerfers, F. Continuous-Time Sigma-Delta A/D Conversion: Fundamentals, Performance Limits and Robust Implementations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 21. [Google Scholar]
- Wagner, J.; Vogelmann, P.; Ortmanns, M. Performance Evaluation of Incremental Sigma-Delta ADCs Based on their NTF. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2813–2817. [Google Scholar] [CrossRef]
- Marques, A.; Peluso, V.; Steyaert, M.; Sansen, W. Optimal parameters for cascade /spl Delta//spl Sigma/ modulators. In Proceedings of the 1997 IEEE International Symposium on Circuits and Systems (ISCAS), Hong Kong, China, 12 June 1997; Volume 1, pp. 61–64. [Google Scholar] [CrossRef]
- Kaesser, P.; Wagner, J.; Ismail, O.; Driemeyer, B.; Ortmanns, M. Quantizer Gain in Incremental Delta-Sigma ADCs. In Proceedings of the 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Istanbul, Turkiye, 4–7 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; He, T.; Zhang, Y.; Chen, C.H.; Temes, G.C. Robust Continuous-Time MASH Delta Sigma Modulator. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 310–313. [Google Scholar] [CrossRef]
OBG | |||||||
---|---|---|---|---|---|---|---|
MB | 4 | 1 | 1 | 2 | 1 | 1 | 1 |
SB | 1.5 | 0.7 | 0.46 | 1.1 | 0.67 | 0.7 | 1 |
Design Parameters | Tradeoffs | 2-0 MASH-QE | 2-1 MASH-QE | 2-0 MASH-LI | 2-1 MASH-LI | 2-0 EC | 2-1 EC |
---|---|---|---|---|---|---|---|
Multi-bit | SQNR [dB] | 90.71 | 76.2 | 85.78 | 69.86 | 85.65 | 78.38 |
MSA [dBFS] | −3.88 | −3.88 | −2.05 | −1.11 | −2.05 | −2.05 | |
Latency | 8 | 8 | 8 | 8 | 9 | 16 | |
Multi-bit | SQNR [dB] | 124.68 | 126.58 | 124.14 | 125.4 | 123.9 | 134.89 |
MSA [dBFS] | −3.88 | −3.88 | −2.05 | −1.11 | −2.05 | −2.05 | |
Latency | 60 | 60 | 60 | 60 | 61 | 120 | |
Single-bit | SQNR [dB] | 109.45 | 114.15 | 112.47 | 117.68 | 105.16 | 121 |
MSA [dBFS] | −6.75 | −6.38 | −1.11 | −1.21 | −1.11 | −1.11 | |
Latency | 100 | 100 | 100 | 100 | 101 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.; Kaesser, P.; Ibrahim, S.; Ortmanns, M. A Comparative Study of Incremental ΔΣ Analog-to-Digital Converter Architectures with Extended Order and Resolution. Electronics 2025, 14, 372. https://doi.org/10.3390/electronics14020372
Aziz M, Kaesser P, Ibrahim S, Ortmanns M. A Comparative Study of Incremental ΔΣ Analog-to-Digital Converter Architectures with Extended Order and Resolution. Electronics. 2025; 14(2):372. https://doi.org/10.3390/electronics14020372
Chicago/Turabian StyleAziz, Monica, Paul Kaesser, Sameh Ibrahim, and Maurits Ortmanns. 2025. "A Comparative Study of Incremental ΔΣ Analog-to-Digital Converter Architectures with Extended Order and Resolution" Electronics 14, no. 2: 372. https://doi.org/10.3390/electronics14020372
APA StyleAziz, M., Kaesser, P., Ibrahim, S., & Ortmanns, M. (2025). A Comparative Study of Incremental ΔΣ Analog-to-Digital Converter Architectures with Extended Order and Resolution. Electronics, 14(2), 372. https://doi.org/10.3390/electronics14020372