Platform-Based Business Models: Insights from an Emerging AI-Enabled Smart Building Ecosystem
Abstract
:1. Introduction
“AI is likely to be either the best or the worst thing to happen to humanity”.—Stephen Hawking
1.1. What is AI?
1.2. Research on the Ecosystem Business Model and Platform
1.3. Research Gaps Addressed in This Study
2. Materials and Methods
2.1. The Integrated Typology of the Platforms
2.2. The 5C Layers of the Business Model
2.3. The Methodology
3. Results
3.1. AI in the Internal-Oriented Platforms
3.2. AI in the Value Chain-Oriented Platforms
3.3. AI in the Ecosystem-Oriented Platforms
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larkin, H.; Hitch, D.; Watchorn, V.; Ang, S. Working with policy and regulatory factors to implement universal design in the built environment: The Australian experience. Int. J. Environ. Res. Public Health 2015, 12, 8157–8171. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Chen, S.; Zheng, Y. Artificial Intelligence in Civil Engineering. Math. Probl. Eng. 2012, 2012, 145974. [Google Scholar] [CrossRef]
- Wang, Z.; Srinivasan, R.S. A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models. In Proceedings of the 2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2016; pp. 3438–3448. [Google Scholar]
- Singer, D.; Bügler, M.; Borrmann, A.; Program, K. Leading N.R.C. Knowledge Based Bridge Engineering—Artificial Intelligence Meets Building Information Modeling. In Proceedings of the EG-ICE Workshop on Intelligent Computing in Engineering, Krakow, Poland, 29 June–1 July 2016. [Google Scholar]
- Moore, G.M. Moore’s Law. Electronics 1965, 38, 114. [Google Scholar]
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; W W Norton & Co: New York, NY, USA, 2014; ISBN 978-0-393-23935-5. [Google Scholar]
- Whyte, J.K.; Hartmann, T. How digitizing building information transforms the built environment. Build. Res. Inf. 2017, 45, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Seet, B.C.; Lie, T.T. Building information modelling for smart built environments. Buildings 2015, 5, 100–115. [Google Scholar] [CrossRef]
- Nakashima, H.; Aghajan, H.; Augusto, J.C. Handbook of Ambient Intelligence and Smart Environments; Springer: New York, NY, USA, 2010; ISBN 9780387938073. [Google Scholar]
- Sullivan, F. Disruptive Innovations Powering Smart Buildings Overview of Key Developments and Innovations Enabling the Adoption of Smarter Buildings; 2019. Available online: https://store.frost.com/disruptive-innovations-powering-smart-buildings.html (accessed on 16 September 2019).
- Wang, Z.; Srinivasan, R.S. A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 2017, 75, 796–808. [Google Scholar] [CrossRef]
- Smits, W.; van Buiten, M.; Hartmann, T. Yield-to-BIM: Impacts of BIM maturity on project performance. Build. Res. Inf. 2017, 45, 336–346. [Google Scholar] [CrossRef]
- Harrison, C.; Donnelly, I.A. A Theory of Smart Cities. In Proceedings of the Proceedings of the 55th Annual Meeting of the ISSS-2011, Hull, UK, 17–22 July 2011; pp. 1–15. [Google Scholar]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Policy 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Coppin, B. Artificial Intelligence Illuminated; Solomon, S., Ed.; Jones and Bartlett Publishers, Inc.: Burlington, MA, USA, 2004; ISBN 0-7637-3230-3. [Google Scholar]
- Ison, R.L. Systems thinking and practice for action research. SAGE Res. Methods 2008. [Google Scholar] [CrossRef]
- Nilsson, N. Artificial Intelligence: A New Synthesis; Morgan Kaufmann: Burlington, MA, USA, 1998; ISBN 9780080948348. [Google Scholar]
- Ilter, D.; Dikbas, A. A review of the artificial intelligence applications in construction dispute resolution. In Proceedings of the CIBW78 Managing IT in Construction 26th International Conference, Istanbul, Turkey, 1–3 October 2009. [Google Scholar]
- De Ridder, D. Artificial intelligence in the lab: Ask not what your computer can do for you. Microb. Biotechnol. 2019, 12, 38–40. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Cao, C.; Lee, S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 2005, 37, 545–553. [Google Scholar] [CrossRef]
- Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl. Energy 2014, 123, 168–178. [Google Scholar] [CrossRef]
- Chou, J.S.; Bui, D.K. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 2014, 82, 437–446. [Google Scholar] [CrossRef]
- Olofsson, T.; Andersson, S.; Östin, R. A method for predicting the annual building heating demand based on limited performance data. Energy Build. 1998, 28, 101–108. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Zott, C.; Amit, R.; Massa, L. The business model: Recent developments and future research. J. Manag. 2011, 37, 1019–1042. [Google Scholar]
- Zott, C.; Amit, R. Business model design: An activity system perspective. Long Range Plan. 2010, 43, 216–226. [Google Scholar] [CrossRef]
- Atkova, I. From Opportunity to Business Model: An Entrepreneurial Action Perspective; University of Oulu: Oulu, Finland, 2018. [Google Scholar]
- Osterwalder, A.; Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470876411. [Google Scholar]
- Foss, N.J.; Saebi, T. Fifteen Years of Research on Business Model Innovation: How Far Have We Come, and Where Should We Go? J. Manag. 2017, 43, 200–227. [Google Scholar] [CrossRef]
- Amit, R.; Han, X. Value Creation through Novel Resource Configurations in a Digitally Enabled World. Strateg. Entrep. J. 2017, 11, 228–242. [Google Scholar] [CrossRef]
- Xu, Y.; Ahokangas, P.; Reuter, E. EaaS: Electricity as a service? J. Bus. Model. 2018, 6, 1–23. [Google Scholar]
- McGrath, R.G. Business models: A discovery driven approach. Long Range Plan. 2010, 43, 247–261. [Google Scholar] [CrossRef]
- Massa, L.; Tucci, C.; Afuah, A. A Critical Assessment of Business Model Research. Acad. Manag. Ann. 2017, 11, 73–104. [Google Scholar] [CrossRef]
- Baden-Fuller, C.; Haefliger, S. Business Models and Technological Innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Tiwana, A.; Konsynski, B.; Bush, A.A. Research Commentary—Platform Evolution: Coevolution of Platform Architecture, Governance, and Environmental Dynamics. Inf. Syst. Res. 2010, 21, 675–687. [Google Scholar] [CrossRef]
- Kindström, D. Towards a service-based business model—Key aspects for future competitive advantage. Eur. Manag. J. 2010, 28, 479–490. [Google Scholar] [CrossRef]
- Weiller, C.; Neely, A. Business Model Design in an Ecosystem Context; University of Cambridge: Cambridge, UK, 2013. [Google Scholar]
- Sawy, O.; Pereira, F. Business Modelling in the Dynamic Digital Space an Ecosystem Approach; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783642317651. [Google Scholar]
- Xu, Y.; Kopsakangas-savolainen, M.; Ahokangas, P.; Li, F. Ecosystemic Business Model and Value in the Peer-To-Peer Smart Grid. In Proceedings of the 2016 International Conference on Global Energy Interconnection, Beijing, China, 30–31 March 2016; pp. 858–871. [Google Scholar]
- El Sawy, O.A.; Malhotra, A.; Gosain, S.; Young, K.M. IT-intensive value innovation in the electronic economy: Insights from Marshall Industries. MIS Q. 1999, 23, 305–335. [Google Scholar] [CrossRef]
- Evans, D.S. The antitrust economics of multi-sided platform markets. Yale J. Regul. 2003, 20, 325–381. [Google Scholar]
- Evans, D.S.; Schmalensee, R. Catalyst Code: The Strategies Behind the World’s Most Dynamic Companies; Harvard Business School Press: Harvard, MA, USA, 2007. [Google Scholar]
- Selsky, J.W.; Goes, J.; Babüroglu, O. Contrasting perspectives of strategy making: Applications in ’hyper’environments. Organ. Stud. 2007, 28, 71–94. [Google Scholar]
- Iansiti, M.; Levien, R. Strategy as ecology. Harv. Bus. Rev. 2004, 82, 68–81. [Google Scholar]
- Iivari, M.M.; Ahokangas, P.; Komi, M.; Tihinen, M.; Valtanen, K. Toward Ecosystemic Business Models in the Context of Industrial Internet. J. Bus. Model. 2016, 4, 42–59. [Google Scholar]
- Casadesus-Masanell, R.; Llanes, G. Mixed Source. Manag. Sci. 2011, 57, 1212–1230. [Google Scholar] [CrossRef] [Green Version]
- Jacobides, M.G.; Cennamo, C.; Gawer, A. Towards a theory of ecosystems. Strateg. Manag. J. 2018, 39, 2255–2276. [Google Scholar] [CrossRef] [Green Version]
- Aho, I. Value-added business models: Linking professionalism and delivery of sustainability. Build. Res. Inf. 2013, 41, 110–114. [Google Scholar] [CrossRef]
- Vischer, J.C. Towards a user-centred theory of the built environment. Build. Res. Inf. 2008, 36, 231–240. [Google Scholar] [CrossRef]
- Hillier, B. Space and spatiality: What the built environment needs from social theory. Build. Res. Inf. 2008, 36, 216–230. [Google Scholar] [CrossRef]
- Vischer, J.C. Towards an environmental psychology of workspace: How people are affected by environments for work. Archit. Sci. Rev. 2008, 51, 97–108. [Google Scholar] [CrossRef]
- Roulet, C.-A.; Johner, N.; Foradini, F.; Bluyssen, P.; Cox, C.; De Oliveira Fernandes, E.; Müller, B.; Aizlewood, C. Perceived health and comfort in relation to energy use and building characteristics. Build. Res. Inf. 2006, 34, 467–474. [Google Scholar] [CrossRef]
- Webb, A.R. Considerations for lighting in the built environment: Non-visual effects of light. Energy Build. 2006, 38, 721–727. [Google Scholar] [CrossRef]
- Lawrence, D.L.; Low, S.M. The Built Environment and Spatial Form. Annu. Rev. Anthropol. 1990, 19, 453–505. [Google Scholar] [CrossRef]
- Åke Granath, J.; Alexander, K. A theoretical reflection on the practice of designing for usability. In Proceedings of the European Facility Management Conference, Frankfurt, Germany, 12–14 June 2006. [Google Scholar]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the Human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Kalvelage, K.; Dorneich, M. A user-centered approach to user-building interactions. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2014, 2014, 2008–2012. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Orosa, J.A.; Oliveira, A.C. Hourly indoor thermal comfort and air quality acceptance with passive climate control methods. Renew. Energy 2009, 34, 2735–2742. [Google Scholar] [CrossRef]
- Brown, Z.; Cole, R.J. Influence of occupants’ knowledge on comfort expectations and behaviour. Build. Res. Inf. 2009, 37, 227–245. [Google Scholar] [CrossRef]
- Matson, Z.; Donmez, B.; Savan, B.; Photiadis, D.; Farahani, E.; Dafoe, J. Social drivers of technology adoption and use in the workplace productivity context. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2012, 56, 2103–2107. [Google Scholar] [CrossRef] [Green Version]
- Garud, R.; Turunen, M. The Banality of Organizational Innovations: Embracing the Substance—Process Duality. Innov. Manag. Policy Pract. 2017, 19, 31–38. [Google Scholar] [CrossRef]
- Haymaker, J.R. Opportunities for AI to Improve Sustainable Building Design Processes Introduction: AEC & Sustainable Design. In Proceedings of the 2011 AAAI Spring Symposium, Stanford, CA, USA, 21–23 March 2011; pp. 60–65. [Google Scholar]
- Mazhelis, O.; Warma, H.; Leminen, S.; Ahokangas, P.; Pussinen, P.; Rajahonka, M.; Siuruainen, R.; Okkonen, H.; Shveykovskiy, A.; Myllykoski, J. Internet-of-Things Market, Value Networks, and Business Models: State of the Art Report; University of Jyvaskyla: Jyväskylä, Finland, 2013. [Google Scholar]
- Gawer, A. Bridging differing perspectives on technological platforms: Toward an integrative framework. Res. Policy 2014, 43, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.H.; Lehnerd, A.P. The Power of Product Platforms; Free Press: New York, NY, USA, 1997. [Google Scholar]
- Krishnan, V.; Gupta, S. Appropriateness and Impact of Platform-Based Product Development. Manag. Sci. 2001, 47, 52–68. [Google Scholar] [CrossRef]
- Jiao, J.; Simpson, T.W.; Siddique, Z. Product family design and platform-based product development: A state-of-the-art review. J. Intell. Manuf. 2007, 18, 5–29. [Google Scholar] [CrossRef]
- Rochet, J.-C.; Tirole, J. Two-Sided Markets: An Overview. Institut d’Economie Industrielle Working Paper 2004. Available online: https://pdfs.semanticscholar.org/1181/ee3b92b2d6c1107a5c899bd94575b0099c32.pdf (accessed on 19 September 2019).
- Evans, D.S.; Hagiu, A.; Schmalensee, R. Invisible Engines: How Software Platforms Drive Innovation and Transform Industries; The MIT Press: Cambridge, MA, USA, 2006; ISBN 9786078418152. [Google Scholar]
- Armstrong, M. Competition in two-sided markets. RAND J. Econ. 2006, 37, 668–691. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.B. The interaction of design hierarchies and market concepts in technological evolution. Res. Policy 1985, 14, 235–251. [Google Scholar] [CrossRef]
- KT, U. The role of product architecture in the manufacturing firm. Res. Policy 1995, 24, 419–440. [Google Scholar] [Green Version]
- Sanderson, S.; Uzumeri, M. Managing product families: The case of the Sony Walkman. Res. Policy 1995, 24, 761–782. [Google Scholar] [CrossRef]
- Baldwin, C.Y.; Woodard, C.J. The Architecture of Platforms: A Unified View; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Rochet, J.-C.; Tirole, J. Platform Competition in Two-Sided Markets. J. Eur. Econ. Assoc. 2003, 1, 990–1029. [Google Scholar] [CrossRef] [Green Version]
- Rochet, J.C.; Tirole, J. Two-sided markets: A progress report. RAND J. Econ. 2006, 37, 645–667. [Google Scholar] [CrossRef]
- Rysman, M. The Economics of Two-Sided Markets. J. Econ. Perspect. 2009, 23, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Chesbrough, H. Business model innovation: Opportunities and barriers. Long Range Plan. 2010, 43, 354–363. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R. The business model: A theoretically anchored robust construct for strategic analysis. Strateg. Organ. 2013, 403–411. [Google Scholar] [CrossRef]
- Eisenmann, T.; Parker, G.; Alstyne, M.W. Van Strategies for Two-Sided Markets. Harv. Bus. Rev. 2006, 84, 12. [Google Scholar]
- Chesbrough, H.; Vanhaverbeke, W. A Classification of Open Innovation and Open Business Models. In New Frontiers in Open Innovation; Oxford University Press: Oxford, UK, 2014; pp. 50–68. ISBN 9780199682676. [Google Scholar]
- Saebi, T.; Foss, N.J. Business models for open innovation: Matching heterogeneous open innovation strategies with business model dimensions. Eur. Manag. J. 2015, 33, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, B.W.; Schilke, O.; Ullrich, S. Strategic development of business models: Implications of the web 2.0 for creating value on the internet. Long Range Plan. 2010, 43, 272–290. [Google Scholar] [CrossRef]
- Yrjola, S.; Ahokangas, P.; Matinmikko, M. Evaluation of recent spectrum sharing concepts from business model scalability point of view. In Proceedings of the 2015 IEEE International Symposium on Dynamic Spectrum Access Networks, Stockholm, Sweden, 29 September–2 October 2015; pp. 241–250. [Google Scholar]
- Walsham, G. Doing interpretive research. Eur. J. Inf. Syst. 2006, 15, 320–330. [Google Scholar] [CrossRef]
- Helfat, C.E.; Raubitschek, R.S. Dynamic and integrative capabilities for profiting from innovation in digital platform-based ecosystems. Res. Policy 2018, 47, 1391–1399. [Google Scholar] [CrossRef]
- Markides, C.C. Business Model Innovation: What Can the Ambidexterity Literature Teach US? Acad. Manag. Perspect. 2013, 27, 313–323. [Google Scholar] [CrossRef]
- Efinition, D.; Ypology, T.; Esign, D.; Geiger, D.; Fielt, E.; Rosemann, M.; Schader, M. Crowdsourcing Information Systems-Definition Typology, and Design. In Proceedings of the Thirty Third International Conference on Information Systems, Orlando, FL, USA, 16–19 December 2012; Volume 12, pp. 1–11. [Google Scholar]
- Bruner, J. The Narrative Construction of Reality. Crit. Inq. 1991, 18, 1–21. [Google Scholar] [CrossRef]
- Alvesson, M.; Sköldberg, K. Reflexive Methodology: New Vistas for Qualitative Research, 3rd ed.; Sage Publications: London, UK, 2017; ISBN 1848601123. [Google Scholar]
- Barad, K. Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning; Duke University Press: Durham, UK, 2007. [Google Scholar]
- Blank, S. The Four Steps to the Epiphany, 2nd ed.; K & S Ranch: San Jose, CA, USA, 2013; ISBN 1708-3087. [Google Scholar]
- Hokkanen, L.; Xu, Y.; Väänänen, K. Focusing on User Experience and Business Models in Startups: Investigation of Two-dimensional Value Creation. In Proceedings of the 20th International Academic Mindtrek Conference, Tampere, Finland, 17–18 October 2016. [Google Scholar]
- Haldar, M.; Abdool, M.; Ramanathan, P.; Xu, T.; Yang, S.; Duan, H.; Zhang, Q.; Barrow-Williams, N.; Turnbull, B.C.; Collins, B.M.; et al. Applying Deep Learning to Airbnb Search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Triggs, R. What Being an “AI First” Company Means for Google. Available online: https://www.androidauthority.com/google-ai-first-812335/ (accessed on 22 May 2019).
- Calvillo, C.F.; Sánchez-Miralles, A.J.V. Energy management and planning in smart cities. CIRED Open Access Proc. J. 2017, 2017, 2723–2725. [Google Scholar] [CrossRef]
- Mladineo, N.; Knezic, S.; Jajac, N. Decision Support System for emergency management on motorway networks. Transportmetrica 2011, 7, 45–62. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M. Cooperative Distributed Control for the Energy Scheduling of Smart Homes with Shared Energy Storage and Renewable Energy Source. IFAC-PapersOnLine 2017, 50, 8867–8872. [Google Scholar] [CrossRef]
- Brusco, G.; Burgio, A.; Menniti, D.; Pinnarelli, A.; Sorrentino, N. Energy management system for an energy district with demand response availability. IEEE Trans. Smart Grid 2014, 5, 2385–2393. [Google Scholar] [CrossRef]
- Figueiredo, J.; Sá Da Costa, J. A SCADA system for energy management in intelligent buildings. Energy Build. 2012, 49, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Carli, R.; Dotoli, M. Energy scheduling of a smart home under nonlinear pricing. In Proceedings of the 3rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 5648–5653. [Google Scholar]
- Carli, R.; Dotoli, M. A decentralized resource allocation approach for sharing renewable energy among interconnected smart homes. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 5903–5908. [Google Scholar]
Layer | Description |
---|---|
Commerce | Digital services and solutions that provide all stakeholders with an application or marketplace for trading alternative connectivity solutions, content, or context data. |
Context | Digital services and solutions that provide data and information-related contextual-based services. |
Content | Digital services and solutions that provide any data, information, and content that users would want or need. |
Connection | Connection technologies and solutions to connect one or more networks. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Ahokangas, P.; Turunen, M.; Mäntymäki, M.; Heikkilä, J. Platform-Based Business Models: Insights from an Emerging AI-Enabled Smart Building Ecosystem. Electronics 2019, 8, 1150. https://doi.org/10.3390/electronics8101150
Xu Y, Ahokangas P, Turunen M, Mäntymäki M, Heikkilä J. Platform-Based Business Models: Insights from an Emerging AI-Enabled Smart Building Ecosystem. Electronics. 2019; 8(10):1150. https://doi.org/10.3390/electronics8101150
Chicago/Turabian StyleXu, Yueqiang, Petri Ahokangas, Marja Turunen, Matti Mäntymäki, and Jukka Heikkilä. 2019. "Platform-Based Business Models: Insights from an Emerging AI-Enabled Smart Building Ecosystem" Electronics 8, no. 10: 1150. https://doi.org/10.3390/electronics8101150
APA StyleXu, Y., Ahokangas, P., Turunen, M., Mäntymäki, M., & Heikkilä, J. (2019). Platform-Based Business Models: Insights from an Emerging AI-Enabled Smart Building Ecosystem. Electronics, 8(10), 1150. https://doi.org/10.3390/electronics8101150