A 270-GHz Push-Push Transformer-Based Oscillator Adopting Power Leakage Suppression Technique
Abstract
:1. Introduction
2. Push-Push Transformer-Based Oscillator Operation and the Proposed Oscillator Topology
3. Oscillator Implementation and Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ojefors, E.; Pfeiffer, U.R.; Lisauskas, A.; Roskos, H.G. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J. Solid-State Circuits 2009, 44, 1968–1976. [Google Scholar] [CrossRef]
- Al Hadi, R.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. A Terahertz Detector Array in a SiGe HBT Technology. IEEE J. Solid-State Circuits 2013, 48, 2002–2010. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz Technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdar, D. THz imaging and sensing for security applications—Explosives weapons and drugs. Semicond. Sci. Technol. 2005, 20, 266–280. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Wallace, V.P.; Jimenez-Linan, M.; Bobrow, L.; Pye, R.J.; Purushotham, A.D.; Arnone, D.D. Terahertz Pulsed Imaging of Human Breast Tumors Radiology. Radiology 2006, 239, 533–540. [Google Scholar] [CrossRef]
- Oh, S.J.; Kang, J.; Maeng, I.; Suh, J.S.; Huh, Y.M.; Haam, S.; Son, J.H. Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt. Express 2009, 17, 3469–3475. [Google Scholar] [CrossRef]
- Oh, S.J.; Choi, J.; Maeng, I.; Park, J.Y.; Lee, K.; Huh, Y.M.; Suh, J.S.; Haam, S.; Son, J.H. Molucular Imaging with Terahertz Waves. Opt. Express 2011, 19, 4009–4016. [Google Scholar] [CrossRef]
- Crawley, D.A.; Longbottom, C.; Cole, B.E.; Ciesla, C.M.; Arnone, D.; Wallace, V.P.; Pepper, M. Terahertz Pulse Imaging: A Pilot Study of Potential Applications in Dentistry. Caries Res. 2003, 37, 352–359. [Google Scholar] [CrossRef]
- Wallace, V.P.; Fitzgerald, A.J.; Shankar, S.; Flanagan, N.; Pye, R.; Cluff, J.; Arnone, D.D. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 2004, 151, 424–432. [Google Scholar] [CrossRef]
- Masson, J.B.; Sauviat, M.P.; Martin, J.L.; Gallot, G. Ionic contrast terahertz near-field imaging of axonal water fluxes. Proc. Natl. Acad. Sci. USA 2006, 13, 4808–4812. [Google Scholar] [CrossRef]
- Oh, S.J.; Huh, Y.; Haam, S.; Suh, J.; Son, J. Medical application of THz imaging technique. In Proceedings of the International Conference on Infrared, Millimeter and Terahertz Waves, Millimeter, and Terahertz Waves, Wollongong, Australia, 23–28 September 2012; pp. 1–3. [Google Scholar]
- Hu, B.B.; Nuss, M.C. Imaging with Terahertz Waves. Optics Lett. 1995, 20, 1716–1718. [Google Scholar] [CrossRef] [PubMed]
- Schuster, F.; Videlier, H.; Dupret, A.; Coquillat, D.; Sakowicz, M.; Rostaing, J.P.; Tchagaspanian, M.; Giffard, B.; Knap, W. A Broadband THz Imager in a Low-Cost CMOS Technology. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 42–43. [Google Scholar]
- Gopalsami, N.; Raptis, A.C. Millimeter-Wave Radar Sensing of Airborne Chemicals. IEEE Trans. Microw. Theory Tech. 2001, 49, 646–653. [Google Scholar] [CrossRef]
- Hansen, H.J. Standoff Detection using Millimeter and sub-Millimeter Wave Spectroscopy. Proc. IEEE. 2007, 95, 1691–1704. [Google Scholar] [CrossRef]
- Sharma, N.; Zhang, J.; Zhong, Q.; Choi, W.; McMillan, J.P.; Neese, C.F.; De Lucia, F.C. 85-to-127 GHz CMOS Transmitter for Rotational Spectroscopy. In Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA, USA, 15–17 September 2014; pp. 1–4. [Google Scholar]
- Zhong, Q.; Choi, W.; Miller, C.; Haenderson, R.; Kenneth, K.O. 25.2 A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 426–427. [Google Scholar]
- Wu, X.; Sengupta, K. A 40-to-330GHz Synthesizer-free THz Spectroscope-On-Chip Exploiting Electromagnetic Scattering. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 428–429. [Google Scholar]
- Wang, C.; Han, R. Dual-Terahertz-Comb Spectrometer on CMOS for Rapid, Wide-Range Gas Detection With Absolute Specificity. IEEE J. Solid-State Circuits 2017, 52, 3361–3372. [Google Scholar] [CrossRef]
- Adam, A. Review of Near-Field Terahertz Measurement Methods and Their Applications. J. Infrared Millim. Terahertz Waves 2011, 32, 976–1019. [Google Scholar] [CrossRef]
- Gryzyb, J.; Heinnemann, B.; Pfeiffer, U.R. A Fully Integrated 0.55 THz Near-Field Sensor with a Lateral Resolution Down to 8 μm in 0.13 μm SiGe BiCMOS. IEEE J. Solid-State Circuits 2016, 51, 3063–3077. [Google Scholar] [CrossRef]
- Khalid, A.; Dunn, G.M.; Macpherson, R.F.; Thoms, S.; Macintyre, D.; Li, C.; Steer, M.J.; Papageorgiou, V.; Thayne, I.G.; Kuball, M.; et al. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys. 2014, 115, 114502. [Google Scholar] [CrossRef]
- Khalid, A.; Li, C.; Papageogiou, V.; Dunn, G.M.; Steer, M.J.; Thayne, I.G.; Kuball, M.; Oxley, C.H.; Montes Bajo, M.; Stephen, A.; et al. In0.53Ga0.47As Planar Gunn Diodes Operating at a Fundamental Frequency of 164 GHz. IEEE Electron Device Lett. 2013, 34, 39–41. [Google Scholar] [CrossRef]
- Maricar, M.I.; Glover, J.; Khalid, A.; Li, C.; Evans, G.; Cumming, D.R.S.; Oxley, C.H. An AlGaAs/GaAs-based planar Gunn diode oscillator with a fundamental frequency operation of 120 GHz. IEEE Microw. Opt. Technol. Lett. 2014, 56, 2449–2451. [Google Scholar] [CrossRef]
- Khalid, A.; Li, C.; Papageogiou, V.; Pilgrim, N.J.; Dunn, G.M.; Cumming, D.R.S. A 218-GHz second-harmonic multiquantum well GaAs-based planar Gunn diodes. IEEE Microw. Optical Tech. Lett. 2013, 55, 686–688. [Google Scholar] [CrossRef]
- Wang, J.; Alharbi, K.; Ofiare, A.; Zhou, H.; Khalid, A.; Cumming, D.; Wasige, E. High Performance Resonant Tunneling Diode Oscillators for THz Applications. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 11–14 October 2015; pp. 1–4. [Google Scholar]
- Wang, J.; Al-Khalidi, A.; Alharbi, K.; Ofiare, A.; Zhou, H.; Wasige, E.; Figueiredo, J. High Performance Resonant Tunneling Diode Oscillators as Terahertz Sources. In Proceedings of the 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016; pp. 341–344. [Google Scholar]
- Al-Khalidi, A.; Alharbi, K.; Wang, J.; Wasige, E. A Compact Terahertz Source Technology for Automotive Radar and Other Applications. In Proceedings of the 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–6. [Google Scholar]
- Wasige, E.; Alharbi, K.; Al-Khalidi, A.; Wang, J.; Khalid, A.; Rodrigues, G.C.; Figueiredo, J. Resonant tunnelling diode terahertz sources for broadband wireless communications. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Hinata, K.; Shiraishi, M.; Suzuki, S.; Asada, M. High power THz oscillators with offset-fed slot antenna and high current density resonant tunneling diodes. In Proceedings of the 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Korea, 21–25 September 2009; pp. 1–2. [Google Scholar]
- Wang, Z.; Chiang, P.; Nazari, P.; Wang, C.; Chen, Z.; Heydari, P. A CMOS 210-GHz Fundamental Transceiver With OOK Modulation. IEEE J. Solid-State Circuits 2014, 49, 564–580. [Google Scholar] [CrossRef]
- Landsberg, N.; Socher, E. 240 GHz and 272 GHz Fundamental VCOs Using 32 nm CMOS Technology. IEEE Trans. Microw. Theory Technol. 2013, 61, 4461–4471. [Google Scholar] [CrossRef]
- Chiang, P.Y.; Momeni, O.; Heydari, P. A 200-GHz Inductively Tuned VCO With -7-dBm Output Power in 130-nm SiGe BiCMOS. IEEE Trans. Microw. Theory Technol. 2013, 61, 3666–3673. [Google Scholar] [CrossRef]
- Han, R.; Afshari, E. A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy. IEEE J. Solid-State Circuits 2013, 48, 3090–3104. [Google Scholar] [CrossRef]
- Adnan, M.; Afshari, E. A 247-to-263.5GHz VCO with 2.6mW peak output power and 1.14% DC-to-RF efficiency in 65 nm Bulk CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 262–263. [Google Scholar]
- Kananizadeh, R.; Momeni, O. A 190-GHz VCO With 20.7% Tuning Range Employing an Active Mode Switching Block in a 130 nm SiGe BiCMOS. IEEE J. Solid-State Circuits 2017, 52, 2094–2104. [Google Scholar] [CrossRef]
- Koo, H.J.; Kim, C.Y.; Hong, S.C. Design and Analysis of 239 GHz CMOS Push-Push Transformer-Based VCO With High Efficiency and Wide Tuning Range. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1883–1893. [Google Scholar] [CrossRef]
- Kordalski, W.J.; Stefanski, T. A non-quasi-static small-signal MOSFET model for radio and microwave frequencies including spreading gate resistances and capacitances. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Philadelphia, PA, USA, 9–10 June 2003; pp. 365–368. [Google Scholar]
Component | Value | Component | Value |
---|---|---|---|
19.2 m/60 nm | 41 pH (Q : 11) | ||
() | (300 GHz) | k | 0.33 |
44 pH (Q : 15) | 148 pH (Q : 25) |
References | [37] | [32] | [35] | [36] | [33] | [34] | This Work |
---|---|---|---|---|---|---|---|
Topology | Transformer Based | Colpitts | Self Feeding | Colpitts | Colpitts | Self Feeding | Transformer Based |
(GHz) | 239 | 272 | 256 | 190.5 | 212 | 260 | 270 |
(dBm) | −4.8 | −22 | 4.1 | −2.1 | −7.1 | 0.5 | −4.5 |
# of Core | 1 | 1 | 8 | 2 | 1 | 8 | 1 |
/Core (dBm) | −4.8 | −22 | −4.9 | −5.1 | −7.1 | −8.5 | −4.5 |
(mW) | 22 | 7 | 227 | 183/294 | 30 | 800 | 17.3 |
Efficiency | 1.47% | 0.09% | 1.13% | 0.22% | 0.65% | 0.14% | 2.10% |
Technology | 65-nm CMOS | 32-nm CMOS | 65-nm CMOS | 130-nm SiGe | 130-nm SiGe | 65-nm CMOS | 65-nm CMOS |
Measurement | Probe | Probe | Probe | Probe | Probe | Antenna | Probe |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utomo, D.R.; Park, D.-W.; Hong, J.-P.; Lee, S.-G. A 270-GHz Push-Push Transformer-Based Oscillator Adopting Power Leakage Suppression Technique. Electronics 2019, 8, 1347. https://doi.org/10.3390/electronics8111347
Utomo DR, Park D-W, Hong J-P, Lee S-G. A 270-GHz Push-Push Transformer-Based Oscillator Adopting Power Leakage Suppression Technique. Electronics. 2019; 8(11):1347. https://doi.org/10.3390/electronics8111347
Chicago/Turabian StyleUtomo, Dzuhri Radityo, Dae-Woong Park, Jong-Phil Hong, and Sang-Gug Lee. 2019. "A 270-GHz Push-Push Transformer-Based Oscillator Adopting Power Leakage Suppression Technique" Electronics 8, no. 11: 1347. https://doi.org/10.3390/electronics8111347
APA StyleUtomo, D. R., Park, D. -W., Hong, J. -P., & Lee, S. -G. (2019). A 270-GHz Push-Push Transformer-Based Oscillator Adopting Power Leakage Suppression Technique. Electronics, 8(11), 1347. https://doi.org/10.3390/electronics8111347