Resource Allocation for Relay-Based OFDMA Power Line Communication System
Abstract
:1. Introduction
2. System Model and Problem Formulation
2.1. System Model
2.2. Problem Formulation
3. The Optimal Resource Allocation Strategy for a PLC System
3.1. The Subcarrier Allocation Strategy
3.2. The Optimal Power Control Scheme
Algorithm 1 The optimal power control algorithm of problem (17). |
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Do, L.P.; Lehnert, R. Dynamic resource allocation protocol for large PLC networks. In Proceedings of the 2012 IEEE International Symposium on Power Line Communications and Its Applications, Beijing, China, 27–30 March 2012; pp. 41–46. [Google Scholar] [CrossRef]
- Zhou, N.; Zhu, X.; Huang, Y. Optimal Asymmetric Resource Allocation and Analysis for OFDM-Based Multidestination Relay Systems in the Downlink. IEEE Trans. Veh. Technol. 2011, 60, 1307–1312. [Google Scholar] [CrossRef]
- Tsai, C.; Chang, C.; Ren, F.; Yen, C. Adaptive radio resource allocation for downlink OFDMA/SDMA systems with multimedia traffic. IEEE Trans. Wirel. Commun. 2008, 7, 1734–1743. [Google Scholar] [CrossRef]
- Pavlidou, N.; Vinck, A.J.H.; Yazdani, J.; Honary, B. Power line communications: state of the art and future trends. IEEE Commun. Mag. 2003, 41, 34–40. [Google Scholar] [CrossRef]
- Kashef, M.; Abdallah, M.; Al-Dhahir, N. Transmit Power Optimization for a Hybrid PLC/VLC/RF Communication System. IEEE Trans. Green Commun. Netw. 2018, 2, 234–245. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Q. Delay quality-of-service driven resource allocation for relay-based OFDMA cognitive radio networks. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 3994–3999. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, F.; Yang, Q. Adaptive Network Resource Optimization for Heterogeneous VLC/RF Wireless Networks. IEEE Trans. Commun. 2018, 66, 5568–5581. [Google Scholar] [CrossRef]
- Kibria, M.G.; Hoque, R. Resource allocation for sum-power minimization in multiuser OFDM with user rate constraints. In Proceedings of the 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2015; pp. 217–221. [Google Scholar] [CrossRef]
- Ma, M.; Yang, Y. SenCar: An Energy-Efficient Data Gathering Mechanism for Large-Scale Multihop Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1476–1488. [Google Scholar] [CrossRef]
- Cano, C.; Pittolo, A.; Malone, D.; Lampe, L.; Tonello, A.M.; Dabak, A.G. State of the Art in Power Line Communications: From the Applications to the Medium. IEEE J. Sel. Areas Commun. 2016, 34, 1935–1952. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, P.; Li, J.; Miao, P. Non-orthogonal multi-carrier MIMO communication system using M-ary efficient modulation. Digit. Signal Process. 2018, 76, 14–21. [Google Scholar] [CrossRef]
- Shin, W.; Vaezi, M.; Lee, J.; Poor, H.V. Cooperative Wireless Powered Communication Networks With Interference Harvesting. IEEE Trans. Veh. Technol. 2018, 67, 3701–3705. [Google Scholar] [CrossRef]
- Yin, S.; Qu, Z. Resource Allocation in Multiuser OFDM Systems With Wireless Information and Power Transfer. IEEE Commun. Lett. 2016, 20, 594–597. [Google Scholar] [CrossRef]
- Xu, W.; Yu, X.; Leung, S.; Chu, J. Energy-Efficient Power Allocation Scheme for Distributed MISO System With OFDM Over Frequency-Selective Fading Channels. IEEE Access 2018, 6, 51217–51226. [Google Scholar] [CrossRef]
- Zhang, Y.; An, J.; Yang, K.; Gao, X.; Wu, J. Energy-Efficient User Scheduling and Power Control for Multi-Cell OFDMA Networks Based on Channel Distribution Information. IEEE Trans. Signal Process. 2018, 66, 5848–5861. [Google Scholar] [CrossRef]
- Tang, L.; Wei, Y.; He, L.; Liao, H.; Chen, Q. Queue-Aware Dynamic Resource Reuse and Joint Allocation Algorithm in Self-Backhaul Small Cell Networks. IEEE Access 2018, 6, 61077–61090. [Google Scholar] [CrossRef]
- Hao, W.; Yang, S. Small Cell Cluster-Based Resource Allocation for Wireless Backhaul in Two-Tier Heterogeneous Networks With Massive MIMO. IEEE Trans. Veh. Technol. 2018, 67, 509–523. [Google Scholar] [CrossRef]
- Gassara, H.; Rouissi, F.; Ghazel, A. Statistical Characterization of the Indoor Low-Voltage Narrowband Power Line Communication Channel. IEEE Trans. Electromagn. Compat. 2014, 56, 123–131. [Google Scholar] [CrossRef]
- Chen, P.; Qi, C.; Wu, L. Antenna placement optimisation for compressed sensing-based distributed MIMO radar. IET Radar Sonar Navig. 2017, 11, 285–293. [Google Scholar] [CrossRef]
- Anatory, J.; Theethayi, N.; Thottappillil, R. Power-Line Communication Channel Model for Interconnected Networks-Part II: Multiconductor System. IEEE Trans. Power Deliv. 2009, 24, 124–128. [Google Scholar] [CrossRef]
- Xu, Z.; Zhai, M.; Zhao, Y. Optimal Resource Allocation Based on Resource Factor for Power-Line Communication Systems. IEEE Trans. Power Deliv. 2010, 25, 657–666. [Google Scholar] [CrossRef]
- Kuhn, M.; Berger, S.; Hammerstrom, I.; Wittneben, A. Power line enhanced cooperative wireless communications. IEEE J. Sel. Areas Commun. 2006, 24, 1401–1410. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, L.; Wang, X.; Li, H.; Wu, L. Moving Target Detection Using Colocated MIMO Radar on Multiple Distributed Moving Platforms. IEEE Trans. Signal Process. 2017, 65, 4670–4683. [Google Scholar] [CrossRef]
- Newbury, J.; Miller, W. Potential communication services using power line carriers and broadband integrated services digital network. IEEE Trans. Power Deliv. 1999, 14, 1197–1201. [Google Scholar] [CrossRef]
- Guerrini, E.; Dell’Amico, G.; Bisaglia, P.; Guerrieri, L. Bit-loading algorithms and SNR estimate for HomePlug AV. In Proceedings of the 2007 IEEE International Symposium on Power Line Communications and Its Applications, Pisa, Italy, 26–28 March 2007; pp. 77–82. [Google Scholar] [CrossRef]
- Latchman, H.; Katar, S.; Yonge, L.; Amarsingh, A. High speed multimedia and smart energy PLC applications based on adaptations of HomePlug AV. In Proceedings of the 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, Johannesburg, South Africa, 24–27 March 2013; pp. 143–148. [Google Scholar] [CrossRef]
- Hwang, Y.M.; Jung, J.H.; Seo, J.K.; Lee, J.; Kim, J.Y. Energy-Efficient Transmission Strategy With Dynamic Load for Power Line Communications. IEEE Trans. Smart Grid 2018, 9, 2382–2390. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, A.; Ratnarajah, T.; Ku, M. A General Approach Toward Green Resource Allocation in Relay-Assisted Multiuser Communication Networks. IEEE Trans. Wirel. Commun. 2018, 17, 848–862. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Gupta, A.; Ratnarajah, T. Energy Efficient Resource Allocation for Multiuser Relay Networks. IEEE Trans. Wirel. Commun. 2017, 16, 1218–1235. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S. Performance Analysis of LDPC Coded DMT Systems with Bit-loading Algorithms for Powerline Channel. In Proceedings of the 2007 IEEE International Symposium on Power Line Communications and Its Applications, Pisa, Italy, 26–28 March 2007; pp. 234–239. [Google Scholar] [CrossRef]
- Li, P.; Scalabrino, N.; Fang, Y.; Gregori, E.; Chlamtac, I. Channel Interference in IEEE 802.11b Systems. In Proceedings of the IEEE GLOBECOM 2007—IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 887–891. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, Y.; Zeng, G.; Xiao, L. Using Partially Overlapping Channels to Improve Throughput in Wireless Mesh Networks. IEEE Trans. Mob. Comput. 2012, 11, 1720–1733. [Google Scholar] [CrossRef]
- Zhang, G.; Yan, H.; Zeng, Y.; Cui, M.; Liu, Y. Trajectory Optimization and Power Allocation for Multi-Hop UAV Relaying Communications. IEEE Access 2018, 6, 48566–48576. [Google Scholar] [CrossRef]
- Chen, P.; Wu, L.; Qi, C. Waveform Optimization for Target Scattering Coefficients Estimation Under Detection and Peak-to-Average Power Ratio Constraints in Cognitive Radar. Circ. Syst. Signal Process. 2016, 35, 163–184. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, W.; Li, X.; Gao, X. Power allocation for multiceli massive MIMO systems under Rician fading with statistical CSI. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yousaf, R.; Ahmad, R.; Ahmed, W.; Haseeb, A. Fuzzy Power Allocation for Opportunistic Relay in Energy Harvesting Wireless Sensor Networks. IEEE Access 2017, 5, 17165–17176. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Chen, P. Efficient modulation and demodulation methods for multi-carrier communication. IET Commun. 2016, 10, 567–576. [Google Scholar] [CrossRef]
- Ezzine, S.; Abdelkefi, F.; Cances, J.P.; Meghdadi, V.; Bouallegue, A. On the evaluation and analysis of the data rate of an OFDM-based two-way relaying PLC system. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1610–1615. [Google Scholar] [CrossRef]
- Chen, P.; Qi, C.; Wu, L.; Wang, X. Waveform Design for Kalman Filter-Based Target Scattering Coefficient Estimation in Adaptive Radar System. IEEE Trans. Veh. Technol. 2018, 67, 11805–11817. [Google Scholar] [CrossRef]
- Chen, P.; Qi, C.; Wu, L.; Wang, X. Estimation of Extended Targets Based on Compressed Sensing in Cognitive Radar System. IEEE Trans. Veh. Technol. 2017, 66, 941–951. [Google Scholar] [CrossRef]
- Ghamkhari, M.; Mohsenian-Rad, H. A Convex Optimization Framework for Service Rate Allocation in Finite Communications Buffers. IEEE Commun. Lett. 2016, 20, 69–72. [Google Scholar] [CrossRef]
- Wadayama, T. Interior Point Decoding for Linear Vector Channels Based on Convex Optimization. IEEE Trans. Inf. Theory 2010, 56, 4905–4921. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Chen, Z.; He, X. Resource Allocation for Relay-Based OFDMA Power Line Communication System. Electronics 2019, 8, 125. https://doi.org/10.3390/electronics8020125
Zhu Q, Chen Z, He X. Resource Allocation for Relay-Based OFDMA Power Line Communication System. Electronics. 2019; 8(2):125. https://doi.org/10.3390/electronics8020125
Chicago/Turabian StyleZhu, Qing, Zhimin Chen, and Xinyi He. 2019. "Resource Allocation for Relay-Based OFDMA Power Line Communication System" Electronics 8, no. 2: 125. https://doi.org/10.3390/electronics8020125
APA StyleZhu, Q., Chen, Z., & He, X. (2019). Resource Allocation for Relay-Based OFDMA Power Line Communication System. Electronics, 8(2), 125. https://doi.org/10.3390/electronics8020125