Performance Analysis of Low-Level and High-Level Intuitive Features for Melanoma Detection
Abstract
:1. Introduction
1.1. Motivation
1.2. Contributions
- GLCM parameters that include contrast, energy, homogeneity and correlation are extracted from both dermIS and dermQuest dataset. Analysis is done using data split of 50%:50%, 70%:30% and 90%:10% for training:test data. Experiment is repeated ten times to evaluate the accuracy using 10 random seeds.
- Analysis of varying GLCM offsets (2, 4, 8, 12, 16, 20, 24, 28) to measure the performance of ANN for skin cancer detection.
- Color features are extracted from each color plane (red, green and blue) and are considered as statistical features. These include mean, median and standard deviation. Color features are applied to ANN as input with the best random seed selected through varying seed analysis.
- Consequently, GLCM and color features are used as consolidated features to evaluate the performance with varying data split for training:test data.
- ABCD (Asymmetry, Border Irregularity, Color, Diameter) features are used as input to ANN for performance analysis. The color factor is computed using statistical features (mean, median, standard deviation) from each color plane.
- Diameter features from ABCD is taken as Oblongness factor which is mostly ignored in literature. The diameter changes with changes in the distance of lesion and image acquisition system.
- Comparison of LLIF and HLIF using ANN for skin cancer detection has been shown.
- The optimal parameter settings of GLCM offset, ANN training and test data split and the effect of varying random seed have been concluded from the analysis.
- A modified standard deviation, a novel way of computing standard deviation from an image, described in Section 4.1, results in a single value of standard deviation, which proves to be better than conventional standard deviation. The accuracy found using the modified standard deviation is .
2. Literature Survey
3. Methodology
3.1. Preprocessing
3.2. Segmentation
3.3. Feature Extraction
3.3.1. Gray Level Co-occurrence Matrix (GLCM) and Haralick’s Statistical Texture Descriptors
3.3.2. Color Features
3.3.3. ABCD Features
3.4. Classification
3.5. Selection of the Number of Hidden Nodes
3.6. Input Samples to Number of Hidden Nodes
4. Implementation Details
Modified Standard Deviation
Algorithm 1 Compute Modified Standard Deviation |
Input: Image of dimension: Output: Final value of the modified standard deviation, Step 1: Compute standard deviation vector along each row vector from the ROI of an image Step 2: Compute final value of standard deviation along the column vector of standard deviation |
5. Evaluation and Results
5.1. Impact of Varying Seed Values on Accuracy
5.2. Impact of Offset Selection on Accuracy
5.3. Performance of GLCM, Statistical Features and ABCD Features
5.4. Impact of Modified Standard Deviation
5.5. Comparison with State-Of-The-Art
6. Discussion
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
GLCM | Gray Level Co-occurrence Matrices |
ABCD | Asymmetry Border irregularity Color Diameter |
HLIF | High Level Intuitive Features |
LLIF | Low Level Intuitive Features |
References
- Guy, G.P., Jr.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 591. [Google Scholar] [PubMed]
- Guy, G.P., Jr.; Machlin, S.R.; Ekwueme, D.U.; Yabroff, K.R. Prevalence and Costs of Skin Cancer Treatment in the US, 2002–2006 and 2007–2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef]
- Glaister, J.; Amelard, R.; Wong, A.; Clausi, D.A. MSIM: Multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis. IEEE Trans. Biomed. Eng. 2013, 60, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.C.; Swetter, S.M.; Brooks, K.; Demierre, M.F.; Yaroch, A.L. Screening, early detection, and trends for melanoma: Current status (2000–2006) and future directions. J. Am. Acad. Dermatol. 2007, 57, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Braun, R.P.; Rabinovitz, H.S.; Oliviero, M.; Kopf, A.W.; Saurat, J.H. Dermoscopy of pigmented skin lesions. J. Am. Acad. Dermatol. 2005, 52, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Amelard, R.; Wong, A.; Clausi, D.A. Extracting high-level intuitive features (HLIF) for classifying skin lesions using standard camera images. In Proceedings of the 2012 Ninth Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 28–30 May 2012; pp. 396–403. [Google Scholar]
- Rani, N.; Nalam, M.; Mohan, A. Detection of Skin Cancer Using Artificial Neural Network. IJIACS 2014, 2, 20–25. [Google Scholar]
- Ouahabi, A. Signal and Image Multiresolution Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jaleel, J.A.; Salim, S.; Aswin, R. Computer Aided Detection of Skin Cancer. In Proceedings of the 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, 20–21 March 2013; pp. 1137–1142. [Google Scholar]
- Meriem, D.; Abdeldjalil, O.; Hadj, B.; Adrian, B.; Denis, K. Discrete wavelet for multifractal texture classification: Application to medical ultrasound imaging. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 637–640. [Google Scholar]
- Ouahabi, A. Multifractal analysis for texture characterization: A new approach based on DWT. In Proceedings of the 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), Kuala Lumpur, Malaysia, 10–13 May 2010; pp. 698–703. [Google Scholar]
- Ouahabi, A.; Femmam, S. Wavelet-based multifractal analysis of 1D, and 2D, signals: New results. Analog Integr. Circuits Signal Process. 2011, 69, 3–15. [Google Scholar] [CrossRef]
- Gerasimova, E.; Audit, B.; Roux, S.G.; Khalil, A.; Gileva, O.; Argoul, F.; Naimark, O.; Arneodo, A. Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Front. Physiol. 2014, 5, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhari, S.; Biday, S. Artificial Neural Network for SkinCancer Detection. Int. J. Emerg. Trends Technol. Comput. Sci. 2014, 3, 147–153. [Google Scholar]
- Aswin, R.; Jaleel, J.A.; Salim, S. Hybrid genetic algorithm—Artificial neural network classifier for skin cancer detection. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 1304–1309. [Google Scholar]
- Mhaske, H.; Phalke, D. Melanoma skin cancer detection and classification based on supervised and unsupervised learning. In Proceedings of the 2013 International conference on Circuits, Controls and Communications (CCUBE), Bengaluru, India, 27–28 December 2013; pp. 1–5. [Google Scholar]
- Alfed, N.; Khelifi, F. Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Syst. Appl. 2017, 90, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Ritesh, M.; Ashwani, S. A Comparative Study of Various Color Texture Features for Skin Cancer Detection. In Sensors and Image Processing; Springer: Berlin, Germany, 2018; pp. 1–14. [Google Scholar]
- Nezhadian, F.K.; Rashidi, S. Melanoma skin cancer detection using color and new texture features. In Proceedings of the Artificial Intelligence and Signal Processing Conference (AISP), Shiraz, Iran, 25–27 October 2017; pp. 1–5. [Google Scholar]
- Kavitha, J.; Suruliandi, A.; Nagarajan, D.; Nadu, T. Melanoma detection in dermoscopic images using global and local feature extraction. Int. J. Multimed. Ubiquitous Eng. 2017, 12, 19–28. [Google Scholar] [CrossRef]
- Kavitha, J.; Suruliandi, A. Texture and color feature extraction for classification of melanoma using SVM. In Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16), Kovilpatti, India, 7–9 January 2016; pp. 1–6. [Google Scholar]
- Almansour, E.; Jaffar, M.A. Classification of Dermoscopic skin cancer images using color and hybrid texture features. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2016, 16, 135–139. [Google Scholar]
- Adjed, F.; Gardezi, S.J.S.; Ababsa, F.; Faye, I.; Dass, S.C. Fusion of structural and textural features for melanoma recognition. IET Comput. Vis. 2017, 12, 185–195. [Google Scholar] [CrossRef]
- Kolkur, M.S.; Kalbande, D.; Kharkar, V. Machine Learning Approaches to Multi–Class Human Skin Disease Detection. Int. J. Comput. Intell. Res. 2018, 14, 29–39. [Google Scholar]
- Chen, J.; Stanley, R.J.; Moss, R.H.; Van Stoecker, W. Colour analysis of skin lesion regions for melanoma discrimination in clinical images. Skin Res. Technol. 2003, 9, 94–104. [Google Scholar] [CrossRef]
- Lau, H.T.; Al-Jumaily, A. Automatically Early Detection of Skin Cancer: Study Based on Neural Netwok Classification. In Proceedings of the SOCPAR’09. International Conference of Soft Computing and Pattern Recognition, Malacca, Malaysia, 4–7 December 2009; pp. 375–380. [Google Scholar]
- Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [Google Scholar] [CrossRef]
- Kawahara, J.; Hamarneh, G. Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features. IEEE J. Biomed. Health Informat. 2018, 23, 578–585. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115. [Google Scholar] [CrossRef]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med Imaging 2017, 36, 994–1004. [Google Scholar] [CrossRef]
- Amelard, R.; Glaister, J.; Wong, A.; Clausi, D.A. Melanoma decision support using lighting-corrected intuitive feature models. In Computer Vision Techniques for the Diagnosis of Skin Cancer; Springer: Berlin, Germany, 2014; pp. 193–219. [Google Scholar]
- Codella, N.C.; Nguyen, Q.B.; Pankanti, S.; Gutman, D.; Helba, B.; Halpern, A.; Smith, J.R. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 2017, 61, 5:1–5:15. [Google Scholar] [CrossRef] [Green Version]
- Haenssle, H.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Gal, Y.; Islam, R.; Ghahramani, Z. Deep bayesian active learning with image data. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1183–1192. [Google Scholar]
- Lopez, A.R.; Giro-i Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep learning techniques. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, 20–21 February 2017; pp. 49–54. [Google Scholar]
- Bi, L.; Kim, J.; Ahn, E.; Feng, D. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv 2017, arXiv:1703.04197. [Google Scholar]
- Masood, A.; Ali Al-Jumaily, A. Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms. Int. J. Biomed. Imaging 2013, 2013, 323268. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Bronstein, Y.; Ross, M.I.; Askew, R.L.; Lee, J.E.; Gershenwald, J.E.; Royal, R.; Cormier, J.N. Contemporary diagnostic imaging modalities for the staging and surveillance of melanoma patients: A meta-analysis. J. Natl. Cancer Inst. 2011, 103, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Dubois, A.; Levecq, O.; Azimani, H.; Siret, D.; Barut, A.; Suppa, M.; Del Marmol, V.; Malvehy, J.; Cinotti, E.; Rubegni, P.; et al. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J. Biomed. Opt. 2018, 23, 106007. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.Q.; Mo, Y.; Wen, Y.Q.; Cheng, M.J.; Huo, S.T.; Chen, X.J.; Chen, Q. Optical coherence tomography for the diagnosis of malignant skin tumors: A meta-analysis. J. Biomed. Opt. 2018, 23, 020902. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.; Park, K.; Kim, D.H.; Jeon, M.; Kim, J. In vivo imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography. J. Biomed. Opt. 2016, 21, 064001. [Google Scholar] [CrossRef]
- Ouahabi, A. A review of wavelet denoising in medical imaging. In Proceedings of the 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), Algiers, Algeria, 12–15 May 2013; pp. 19–26. [Google Scholar]
- Hoshyar, A.N.; Al-Jumaily, A.; Hoshyar, A.N. The beneficial techniques in preprocessing step of skin cancer detection system comparing. Procedia Comput. Sci. 2014, 42, 25–31. [Google Scholar] [CrossRef]
- Bakheet, S. An svm framework for malignant melanoma detection based on optimized hog features. Computation 2017, 5, 4. [Google Scholar] [CrossRef]
- Lynn, N.C.; Kyu, Z.M. Segmentation and Classification of Skin Cancer Melanoma from Skin Lesion Images. In Proceedings of the 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Taipei, Taiwan, 18–20 December 2017; pp. 117–122. [Google Scholar]
- Adjed, F.; Faye, I.; Ababsa, F. Segmentation of skin cancer images using an extension of chan and vese model. In Proceedings of the 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai, Thailand, 29–30 October 2015; pp. 442–447. [Google Scholar]
- Xu, L.; Jackowski, M.; Goshtasby, A.; Roseman, D.; Bines, S.; Yu, C.; Dhawan, A.; Huntley, A. Segmentation of skin cancer images. Image Vis. Comput. 1999, 17, 65–74. [Google Scholar] [CrossRef]
- Sumithra, R.; Suhil, M.; Guru, D. Segmentation and classification of skin lesions for disease diagnosis. Procedia Comput. Sci. 2015, 45, 76–85. [Google Scholar] [CrossRef]
- Goel, R.; Singh, S. Skin Cancer Detection using GLCM Matrix Analysis and Back Propagation Neural Network Classifier. Int. J. Comput. Appl. 2015, 112, 40–47. [Google Scholar]
- Haralick, R.; Shanmugam, K.; Dinstein, I. Texture Features for Image Classification. IEEE Trans. Syst. Man, Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Ahmad, A.M.; Khan, G.M.; Mahmud, S.A.; Miller, J.F. Breast cancer detection using cartesian genetic programming evolved artificial neural networks. In Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, Philadelphia, PA, USA, 7–11 July 2012; pp. 1031–1038. [Google Scholar]
- Al Mutaz, M.A.; Dress, S.; Zaki, N. Detection of Masses in Digital Mammogram Using Second Order Statistics and Artificial Neural Network. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 176–186. [Google Scholar]
- Santin, F.M.; Grzybowski, J.M.V.; da Silva, R.V. Application of neural network ensembles to the problem of estimating riparian buffer width as a function of desired filtering properties. In Proceedings of the Ist International Congress of Management Technology and Innovation, Erechim, Brazil, 21–25 September 2015. [Google Scholar]
- Sheela, K.G.; Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar] [CrossRef]
- Ramadevi, R.; Sheela Rani, B.; Prakash, V. Role of hidden neurons in an elman recurrent neural network in classification of cavitation signals. Int. J. Comput. Appl. 2012, 37, 9–13. [Google Scholar]
- Ke, J.; Liu, X. Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction. In Proceedings of the 2008 IEEE Pacific–Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 19–20 December 2008; Volume 2, pp. 828–832. [Google Scholar]
- Jaworek-Korjakowska, J. Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines. BioMed Res. Int. 2016, 2016, 4381972. [Google Scholar] [CrossRef]
- Brinker, T.J.; Hekler, A.; Utikal, J.S.; Grabe, N.; Schadendorf, D.; Klode, J.; Berking, C.; Steeb, T.; Enk, A.H.; von Kalle, C. Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review. J. Med Internet Res. 2018, 20, e11936. [Google Scholar] [CrossRef]
- Ganster, H.; Pinz, P.; Rohrer, R.; Wildling, E.; Binder, M.; Kittler, H. Automated melanoma recognition. IEEE Trans. Med Imaging 2001, 20, 233–239. [Google Scholar] [CrossRef]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 168–172. [Google Scholar]
Random Seeds | Result 1 | Result 2 | Result 3 |
---|---|---|---|
71.40% | 69.90% | 65.00% | |
67.50% | 66.00% | 68.90% | |
67.50% | 67.50% | 42.20% | |
68.90% | 65.50% | 65.00% | |
66.50% | 58.30% | 66.50% | |
65.00% | 66.00% | 60.70% | |
68.40% | 50.00% | 58.30% | |
69.40% | 65.00% | 71.40% | |
57.80% | 65.50% | 42.20% | |
67.00% | 62.10% | 63.10% | |
Average | 66.94% | 63.58% | 60.33% |
Offset | Performance |
---|---|
2 | 71.4% |
4 | 65.0% |
8 | 68.0% |
12 | 69.9% |
16 | 70.4% |
20 | 70.9% |
24 | 76.2% |
28 | 73.8% |
Training Data | Validation Data | Verification Data | Performance |
---|---|---|---|
50% | 25% | 25% | 76.2% |
70% | 15% | 15% | 76.2% |
90% | 5% | 5% | 42.2% |
Training Data | Validation Data | Verification Data | Performance |
---|---|---|---|
50% | 25% | 25% | 80.1% |
70% | 15% | 15% | 81.6% |
90% | 5% | 5% | 58.3% |
Standard Deviation Version | Training Data | Validation Data | Verification Data | Accuracy |
---|---|---|---|---|
Conventional 2D stdev | 70% | 15% | 15% | 89.8% |
Modified stdev | 70% | 15% | 15% | 93.7% |
# Hidden Layers | Neurons per Layer | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
1 | 15 | 95.8% | 91% | 93.7% |
1 | 20 | 88.2% | 62% | 77.2% |
1 | 25 | 89% | 77% | 84% |
1 | 30 | 84% | 78% | 81.5% |
2 | [15 15] | 81.5% | 71.3% | 77.2% |
2 | [20 20] | 84% | 60% | 93.8% |
2 | [25 25] | 76.4% | 67% | 72.3% |
2 | [30 30] | 81.5% | 64.4% | 74.3% |
3 | [15 15 15] | 89% | 68% | 80.1% |
3 | [20 20 20] | 92.4% | 82.7% | 88.3% |
3 | [25 25 25] | 82.3% | 80.45% | 81.5% |
3 | [30 30 30] | 73.5% | 89.1% | 82.5% |
Features | Method | Data Source | Samples | Spe | Sen | Acc | Ref |
---|---|---|---|---|---|---|---|
2D wavelets | ANN | Skincancer.org | — | 60–75% | [16] | ||
melanoma color feature | Color histogram analysis | NY Univ., Dept. Dermatology | 129 melanoma, 129 benign | 88–89% | [25] | ||
wavelets | 3 layer NN | — | — | 89.90% | [26] | ||
wavelets | Auto associative NN | — | — | 80.80% | [26] | ||
Shape and radiometric features | KNN | 5363 | 92% | 87% | [59] | ||
Proposed method | ANN | Derm IS and DermQuest | 206 | 91% | 95.8% | 93.7% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashfaq, M.; Minallah, N.; Ullah, Z.; Ahmad, A.M.; Saeed, A.; Hafeez, A. Performance Analysis of Low-Level and High-Level Intuitive Features for Melanoma Detection. Electronics 2019, 8, 672. https://doi.org/10.3390/electronics8060672
Ashfaq M, Minallah N, Ullah Z, Ahmad AM, Saeed A, Hafeez A. Performance Analysis of Low-Level and High-Level Intuitive Features for Melanoma Detection. Electronics. 2019; 8(6):672. https://doi.org/10.3390/electronics8060672
Chicago/Turabian StyleAshfaq, Muniba, Nasru Minallah, Zahid Ullah, Arbab Masood Ahmad, Aamir Saeed, and Abdul Hafeez. 2019. "Performance Analysis of Low-Level and High-Level Intuitive Features for Melanoma Detection" Electronics 8, no. 6: 672. https://doi.org/10.3390/electronics8060672
APA StyleAshfaq, M., Minallah, N., Ullah, Z., Ahmad, A. M., Saeed, A., & Hafeez, A. (2019). Performance Analysis of Low-Level and High-Level Intuitive Features for Melanoma Detection. Electronics, 8(6), 672. https://doi.org/10.3390/electronics8060672