Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Falade, O.P.; Jilani, S.F.; Ahmed, A.Y.; Wildsmith, T.; Reip, P.; Rajab, K.Z.; Alomainy, A. Design and characterization of a screen-printed millimeter-wave flexible metasurface using copper ink for communication applications. Flex. Print. Electron. 2018, 3, 045005. [Google Scholar] [CrossRef]
- Whittow, W.G.; Chauraya, A.; Vardaxoglou, J.C.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Inkjet-printed microstrip patch antennas realized on textile for wearable applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 71–74. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Forsberg, S.; Engström, A.-C.; Nurmi, M.; Andres, B.; Dahlström, C.; Toivakka, M. Conductive nanographite–nanocellulose coatings on paper. Flex. Print. Electron. 2017, 2, 35002. [Google Scholar] [CrossRef]
- Perelaer, J.; Hendriks, C.E.; Laat, A.W.M.; Schubert, U.S. One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 2009, 20, 165303. [Google Scholar] [CrossRef] [PubMed]
- Rim, Y.S.; Bae, S.-H.; Chen, H.; De Marco, N.; Yang, Y.; Bae, S. Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Adv. Mater. 2016, 28, 4415–4440. [Google Scholar] [CrossRef]
- Sowade, E.; Mitra, K.Y.; Ramon, E.; Martínez-Domingo, C.; Villani, F.; Loffredo, F.; Gomes, H.L.; Baumann, R.R. Up-scaling of the manufacturing of all-inkjet-printed organic thin-film transistors: Device performance and manufacturing yield of transistor arrays. Org. Electron. 2016, 30, 237–246. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sensors J. 2015, 15, 3164–3185. [Google Scholar] [CrossRef]
- Chen, S.-P.; Chiu, H.-L.; Wang, P.-H.; Liao, Y.-C. Inkjet printed conductive tracks for printed electronics. ECS J. Solid State Sci. Technol. 2015, 4, 3026–3033. [Google Scholar] [CrossRef]
- Sowade, E.; Polomoshnov, M.; Baumann, R.R. The design challenge in printing devices and circuits: Influence of the orientation of print patterns in inkjet-printed electronics. Org. Electron. 2016, 37, 428–438. [Google Scholar] [CrossRef]
- Lewis, A.P.; Hunt, C.; Thomas, O.; Wickham, M. High-speed non-contact sheet resistivity monitoring of printed electronics using inductive sensors. Flex. Print. Electron. 2017, 2, 4. [Google Scholar] [CrossRef]
- Betancourt, D.; Castan, J. Printed antenna on flexible low-cost pet substrate for UHF applications. PIER C 2013, 38, 129–140. [Google Scholar] [CrossRef]
- Beisteiner, C.; Zagar, B.G. Dielectric permittivity measurement of paper substrate using commercial inkjet printers. Procedia Eng. 2016, 168, 995–998. [Google Scholar] [CrossRef]
- Altay, B.N.; Jourdan, J.; Turkani, V.S.; Dietsch, H.; Maddipatla, D.; Pekarovicova, A.; Fleming, P.D.; Atashbar, M. Impact of substrate and process on the electrical performance of screen-printed nickel electrodes: fundamental mechanism of ink film roughness. ACS Appl. Energy Mater. 2018, 1, 7164–7173. [Google Scholar] [CrossRef]
- Heinrichsdobler, A.; Roigk, J.C.; Schirmeier, F.; Brabec, C.J.; Wehlus, T. Pinhole-free inkjet printing strategies for organic electronics. Adv. Mater. Technol. 2017, 2, 1700166. [Google Scholar] [CrossRef]
- Feng, X.; Su, R.; Happonen, T.; Liu, J.; Leach, R. Fast and cost-effective in-process defect inspection for printed electronics based on coherent optical processing. Opt. Express 2018, 26, 13927–13937. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kow, J.; Raske, N.; Boer, G.D.; Ghajjari, M.; Hewson, R.; Alazmani, A.; Culmer, P. Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect. Sens. Actuators, A 2018, 271, 44–52. [Google Scholar] [CrossRef]
- Zeng, Y.; Edwards, M.; Stevens, R.; Bowen, J.W.; Donnan, R.S.; Yang, B. Terahertz characterisation of UV offset lithographically printed electronic-ink. Org. Electron. 2017, 48, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Zhuldybina, M.; Ropagnol, X.; Trudeau, C.; Bolduc, M.; Zednik, R.J.; Blanchard, F. Contactless In Situ Electrical Characterization Method of Printed Electronic Devices with Terahertz Spectroscopy. Sensors 2019, 3, 444. [Google Scholar] [CrossRef]
- Yu, C.; Zeng, Y.; Yang, B.; Donnan, R.S.; Huang, Z.; Xiong, J.; Mahajan, A.; Shi, B.; Ye, H.; Binions, R.; et al. Titanium dioxide engineered for near-dispersionless high Terahertz permittivity and ultra-low-loss. Sci. Rep. 2017, 7, 6639. [Google Scholar] [CrossRef] [PubMed]
- Schecklman, S.; Zurk, L.M.; Henry, S.; Kniffin, G.P. Terahertz material detection from diffuse surface scattering. J. Appl. Phys. 2011, 109, 094902. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Donnan, R.S.; Zhou, M.; Kingravi, A.A. Reassessment of the electromagnetic reflection response of human skin at W-band. Opt. Lett. 2011, 36, 4203–4205. [Google Scholar] [CrossRef] [PubMed]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417. [Google Scholar] [CrossRef] [PubMed]
- Appleby, R.; Robertson, D.A.; Wikner, D. Millimeter wave imaging: a historical review. In Proceedings of Volume 10189, Passive and Active Millimeter-Wave Imaging XX, 10189, SPIE Defense + Security, Anaheim, CA, USA, 9–13 April 2017; Wikner, D.A., Robertson, D.A., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 1018902. [Google Scholar]
- Arapov, K.; Bex, G.; Hendriks, R.; Rubingh, E.; Abbel, R.; de With, G.; Friedrich, H. Conductivity enhancement of Binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 2016. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Hu, D.; Sun, W.; Ye, J.; Zhang, Y. Terahertz quasi-near-field real-time imaging. Opt. Commun. 2009, 282, 4683–4687. [Google Scholar] [CrossRef]
- Blanchard, F.; Doi, A.; Tanaka, T.; Hirori, H.; Tanaka, H.; Kadoya, Y.; Tanaka, K. Real-time terahertz near-field microscope. Opt. Express 2011, 19, 8277–8284. [Google Scholar] [CrossRef] [Green Version]
- Naftaly, M.; Miles, R.E. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE 2007, 95, 1658–1665. [Google Scholar] [CrossRef]
- Scheller, M. Data extraction from Terahertz time domain spectroscopy measurements. J. Infrared Millimeter Waves 2014, 35, 638–648. [Google Scholar] [CrossRef]
Line Scanner Imager | THz-TDS CCD Imager | |
---|---|---|
Number of Pixels | 256 × 1 pixels without moving slider (in this work, 33 × 67 pixels with moving slider) | Dependent on the surface area of the ZnTe detector crystal and CCD camera (187 × 187 pixels in this work) |
Pixel size | 1.5 × 1.5 mm | 32 × 32 μm |
Imaging area | 384 mm in width; length can be infinite with moving slider | Dependent on the area of the ZnTe detector crystal |
Dimension of the system | Source: 12 × 7 × 7 cm Detector: 45.2 × 17.5 × 4.5 cm | Bulk optical system |
Detector resolution | 1.5 × 1.5 mm2 | 32 × 32 μm2 (CCD camera) |
Operating frequency | 100 GHz | 200 GHz–3 THz |
Acquisition rate | 1 second | <30 s |
Interface | Python and Matlab | Labview and Matlab |
Advantages | High speed; high throughput and large area inspection; compact system that conveniently integrates with manufacturing line | High spatial resolution; medium speed; acquires both amplitude and phase information |
Disadvantages | Limited to mm-wave spatial resolution; only amplitude information-based screening and lack of phase information | Bulk system; screening area is limited by the size of the detector crystal |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tang, J.; Sun, W.; Zhang, Y.; Wang, X.; Yang, B. Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging. Electronics 2019, 8, 674. https://doi.org/10.3390/electronics8060674
Zhang J, Tang J, Sun W, Zhang Y, Wang X, Yang B. Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging. Electronics. 2019; 8(6):674. https://doi.org/10.3390/electronics8060674
Chicago/Turabian StyleZhang, Jiao, Jianhua Tang, Wenfeng Sun, Yan Zhang, Xinke Wang, and Bin Yang. 2019. "Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging" Electronics 8, no. 6: 674. https://doi.org/10.3390/electronics8060674
APA StyleZhang, J., Tang, J., Sun, W., Zhang, Y., Wang, X., & Yang, B. (2019). Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging. Electronics, 8(6), 674. https://doi.org/10.3390/electronics8060674