Novel Stochastic Computing for Energy-Efficient Image Processors
Abstract
:1. Introduction
2. Stochastic Computing
3. Stochastic Computing Using a Wire Exchanging Technique
3.1. Basic Structures
3.2. Simulation Results and FPGA Verifications
4. Stochastic Sobel Edge Detection
4.1. Basic Structures
4.2. Simulation Results and FPGA Verifications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Han, J.; Orshansky, M. Approximate computing: An emerging paradigm for energy-efficient design. In Proceedings of the 2013 18th IEEE European Test Symposium (ETS), Avignon, France, 27–30 May 2013; pp. 1–6. [Google Scholar]
- Agrawal, A.; Choi, J.; Gopalakrishnan, K.; Gupta, S.; Nair, R.; Oh, J.; Prener, D.A.; Shukla, S.; Srinivasan, V.; Sura, Z. Approximate computing: Challenges and opportunities. In Proceedings of the IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–8. [Google Scholar]
- Gaines, B.R. Stochastic computing systems. In Advances in Information Systems Science; Springer: Boston, MA, USA, 1969; Volume 2, pp. 37–172. [Google Scholar]
- Alaghi, A.; Hayes, J.P. Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. TECS 2012, 12, 92. [Google Scholar] [CrossRef]
- Parhi, K.K. Analysis of stochastic logic circuits in unipolar, bipolar and hybrid formats. In Proceedings of the International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Ichihara, H.; Ishii, S.; Sunamori, D.; Iwagaki, T.; Inoue, T. Compact and accurate stochastic circuits with shared random number sources. In Proceedings of the International Conference on Computer Design (ICCD), Seoul, Korea, 19–22 October 2014; pp. 361–366. [Google Scholar]
- Ranjbar, M.; Salehi, M.E.; Najafi, M.H. Using stochastic architectures for edge detection algorithms. In Proceedings of the Iranian Conference on Electrical Engineering, Tehran, Iran, 10–14 July 2015; pp. 723–728. [Google Scholar]
- Alaghi, A.; Li, C.; Hayes, J.P. Stochastic circuits for real-time image-processing applications. In Proceedings of the Design Automation Conference, Austin, TX, USA, 29 May–7 July 2013; pp. 1–6. [Google Scholar]
- Qian, W.; Li, X.; Riedel, M.D.; Bazargan, K.; Lilja, D.J. An architecture for fault-tolerant computation with stochastic logic. IEEE Trans. Comput. 2011, 60, 93–105. [Google Scholar] [CrossRef]
- Seva, R.; Metku, P.; Choi, M. Energy-efficient FPGA-based parallel quasi-stochastic computing. J. Low Power Electron. Appl. 2017, 7, 29. [Google Scholar] [CrossRef]
- Alaghi, A.; Hayes, J.P. Fast and accurate computation using stochastic circuits. In Proceedings of the Conference on Design, Automation & Test in Europe, Dresden, Germany, 24–28 March 2014; p. 76. [Google Scholar]
- Liu, S.; Han, J. Energy efficient stochastic computing with Sobol sequences. In Proceedings of the Conference on Design, Automation & Test in Europe, Lausanne, Switzerland, 27–31 March 2017; pp. 650–653. [Google Scholar]
- Vahapoglu, E.; Altun, M. Accurate synthesis of arithmetic operations with stochastic logic. In Proceedings of the 2016 IEEE Computer Society Annual Symposium VLSI(ISVLSI), Pittsburgh, PA, USA, 11–13 July 2016; pp. 415–420. [Google Scholar]
- Yuan, B.; Zhang, C.; Wang, Z. Design space exploration for hardware-efficient stochastic computing: A case study on discrete cosine transformation. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 6555–6559. [Google Scholar]
- Lee, V.T.; Alaghi, A.; Ceze, L. Correlation manipulating circuits for stochastic computing. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 19–23 March 2018; pp. 1417–1422. [Google Scholar]
- Alaghi, A.; Hayes, J.P. Exploiting correlation in stochastic circuit design. In Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013; pp. 39–46. [Google Scholar]
- Alaghi, A.; Hayes, J.P. Dimension reduction in statistical simulation of digital circuits. In Proceedings of the Symposium on Theory of Modeling & Simulation (TMS DEVS), Alexandria, VA, USA, 12–15 April 2015; pp. 1–8. [Google Scholar]
- Alaghi, A.; Qian, W.; Hayes, J.P. The Promise and Challenge of Stochastic Computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 1515–1531. [Google Scholar] [CrossRef]
- Li, P.; Lilja, D.J.; Qian, W.; Bazargan, K.; Riedel, M.D. Computation on Stochastic Bit Streams Digital Image Processing Case Studies. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2014, 22, 449–462. [Google Scholar] [CrossRef]
- Lang, T.; Stone, H.S. A shuffle-exchange network with simplified control. IEEE Trans. Comput. 1976, 100, 55–65. [Google Scholar] [CrossRef]
- Quartus 13.1 User Manual. Available online: https://www.intel.com/ (accessed on 21 August 2018).
- DE1-SoC User Manual 1.2.2. Available online: http://www.terasic.com/ (accessed on 5 July 2017).
- Nangate: 45 nm Open Cell Library. Available online: https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library (accessed on 4 January 2019).
- Design Compiler ver.M-2016.12-SP5-5. Available online: https://www.synopsys.com/ (accessed on 16 May 2018).
Wire Bit Numbering | ||||||||
---|---|---|---|---|---|---|---|---|
Original | ||||||||
Various SNG | ||||||
---|---|---|---|---|---|---|
Dedicated | Sharing | Inverter | Wire () | Proposed () | ||
SCC AVG | 0.042 | 1 | −0.921 | 0.93 | 0.164 | |
SC adder | ABS RE AVG | 0.030 | 0.023 | 0.032 | 0.032 | 0.021 |
SD | 0.053 | 0.027 | 0.014 | 0.065 | 0.023 | |
CV | 1.740 | 1.134 | 3.553 | 2.026 | 1.07 | |
SC multiplier | ABS RE AVG | 0.187 | 0.341 | 0.646 | 0.514 | 0.104 |
SD | 0.274 | 0.271 | 0.403 | 0.595 | 0.219 | |
CV | 0.682 | 1.258 | 1.601 | 0.864 | 0.475 |
Accurate | SC with Various SNG | Impr. over Wallace Tree | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Binary | Wallace Tree | Behavior | Dedicated | Sharing | Inverter | |||||
ASIC 45-nm | Total area | 404.65 | 544.03 | 434.09 | 391.99 | 302.35 | 303.38 | 301.55 | 301.40 | 45% |
Power (W) | 197.55 | 329.90 | 220.98 | 54.33 | 31.41 | 30.75 | 30.96 | 30.88 | 91% | |
Delay (ns) | 2.15 | 3.81 | 1.19 | 0.42 | 0.48 | 0.48 | 0.48 | 0.48 | 88% | |
FPGA | Frequency | 102.51 | 150.33 | 310.08 | 440.6 | 425.2 | 427.75 | 413.87 | 417.54 | 2.8× |
Power (mW) | 1.10 | 2.15 | 2.52 | 0.67 | 0.56 | 0.54 | 0.57 | 0.56 | 74% |
Accurate | Stochastic | |||||
---|---|---|---|---|---|---|
Dedicated | Sharing | Inverter | Proposed | |||
ASIC 45 nm | Total area (m) | 896.61 | 717.41 | 319.72 | 319.53 | 322.98 |
Power (mW) | 0.70 | 0.11 | 0.03 | 0.03 | 0.03 | |
Data arrival time | 0.20 | 0.46 | 0.70 | 0.70 | 0.60 | |
FPGA | Logic utilization (in ALMs)(/32070) | 60 | 48 | 31 | 31 | 31 |
Total register | 24 | 63 | 21 | 21 | 21 | |
Dynamic power (mW) | 3.18 | 1.86 | 1.04 | 1.23 | 1.29 | |
Frequency (MHz) | 136.35 | 321.96 | 347.95 | 312.40 | 329.75 | |
RMSE | airplane | - | 35.43 | 47.17 | 47.18 | 34.58 |
lenna | - | 38.04 | 54.45 | 54.75 | 41.66 | |
pepper | - | 35.68 | 52.37 | 52.24 | 38.32 | |
sailboat | - | 47.72 | 69.80 | 69.81 | 50.84 | |
tiffany | - | 38.09 | 42.84 | 42.68 | 32.01 | |
average | - | 38.99 | 53.33 | 53.33 | 39.48 | |
PSNR | airplane | - | 15.93 | 13.45 | 13.44 | 16.19 |
lenna | - | 15.28 | 12.20 | 12.16 | 14.53 | |
pepper | - | 15.87 | 12.56 | 12.58 | 15.29 | |
sailboat | - | 13.32 | 10.04 | 10.04 | 12.79 | |
tiffany | - | 15.29 | 14.32 | 14.33 | 16.85 | |
average | - | 15.14 | 12.51 | 12.51 | 15.13 | |
Percentage difference between images (%) | airplane | - | 12.63 | 13.01 | 13.01 | 8.91 |
lenna | - | 13.68 | 17.37 | 17.42 | 12.86 | |
pepper | - | 11.15 | 16.52 | 16.49 | 11.27 | |
sailboat | - | 15.15 | 21.92 | 21.91 | 14.94 | |
tiffany | - | 14.58 | 13.33 | 13.31 | 9.29 | |
average | - | 13.44 | 16.43 | 16.43 | 11.45 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joe, H.; Kim, Y. Novel Stochastic Computing for Energy-Efficient Image Processors. Electronics 2019, 8, 720. https://doi.org/10.3390/electronics8060720
Joe H, Kim Y. Novel Stochastic Computing for Energy-Efficient Image Processors. Electronics. 2019; 8(6):720. https://doi.org/10.3390/electronics8060720
Chicago/Turabian StyleJoe, Hounghun, and Youngmin Kim. 2019. "Novel Stochastic Computing for Energy-Efficient Image Processors" Electronics 8, no. 6: 720. https://doi.org/10.3390/electronics8060720
APA StyleJoe, H., & Kim, Y. (2019). Novel Stochastic Computing for Energy-Efficient Image Processors. Electronics, 8(6), 720. https://doi.org/10.3390/electronics8060720