A VOHE System for Underwater Communications
Abstract
:1. Introduction
2. The VOHE System Design
2.1. Holographic Encryption
2.2. Holographic Decryption
2.3. ERSA (Expanded RSA) Algorithm
- Multiply the p and q values to produce , where N is also a complex number. In the ERSA algorithm, the extended Euler function is and, for the conventional RSA algorithm, the Euler function is . Hence, compared to the RSA Euler-phi function, the ERSA provides more security for extending Euler-phi functions than that of the conventional RSA. In contrast to the RSA algorithm, the ERSA includes negative integers by which security can be strengthened.
- A private key (d, N) and a public key (b, N) are calculated as shown in Algorithm 1. The encryption and decryption processes are shown in Algorithms 2 and 3, respectively. The message m that includes information about λ, f must be sent to the receiver through a secure channel. As shown in Algorithm 2, the cipher c, which is formed in a complex function, is sent to the receiver. At the receiver side, the receiver is using its private key to calculate the message m1, which is also a complex number, as shown in Algorithm 3. Finally, the process to convert m1 from a complex number to a real number m that contains information about λ, f is given in Algorithm 4.
Algorithm 1 Calculate <Keys> Input: 1: N 2: 3: 4: Output
Algorithm 2 <Encryption> |
Input: |
1: |
2: Output: |
Algorithm3 <Decryption> |
Input: |
1: m1 |
2: |
3: Output |
Algorithm 4 <V2M (m1, N)> |
Input: , |
1: |
Input: , |
2: |
3: |
4: : |
5: : |
6: : |
7: : |
8: |
9: Output m |
3. Experiment Results and Analysis
3.1. Encryption Process
3.2. ERSA Algorithm Process
3.3. Decryption Process
4. Security Evaluation
4.1. Bits Error Check
4.2. Testing and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spagnolo, G.S.; Cozzella, L.; Leccese, F. Underwater Optical Wireless Communications: Overview. Sensors 2020, 20, 2216. [Google Scholar]
- Diamant, R.; Campagnaro, F.; De Grazia, M.D.F.; Casari, P.; Testolin, A.; Calzado, V.S.; Zorzi, M. On the relationship between the underwater acoustic and optical channels. IEEE Trans. Wirel. Commun. 2017, 16, 8037–8051. [Google Scholar] [CrossRef]
- Roumelas, G.D.; Nistazakis, H.E.; Stassinakis, A.N.; Volos, C.K.; Tsigopoulos, A.D. Underwater optical wireless communications with chromatic dispersion and time jitter. Computation 2019, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Yan, Q.; Li, Z.; Zhan, T.; Wang, Y. Photon-counting underwater optical wireless communication for reliable video transmission using joint source-channel coding based on distributed compressive sensing. Sensors 2019, 19, 1042. [Google Scholar] [CrossRef] [Green Version]
- Doh, K.B.; Kim, K.; Poon, T.-C. Computer generated holographic image processing for information security. In Parallel and Distributed Computing: Applications and Technologies; Springer: Berlin, Germany, 2004; pp. 111–115. [Google Scholar]
- Hennelly, B.; Sheridan, J.T. Optical image encryption by random shifting in fractional fourier domains. Opt. Lett. 2003, 28, 269–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, N.; Li, H.; Wang, D.; Pan, S.; Zhou, Z. Image compression and encryption scheme based on 2d compressive sensing and fractional mellin transform. Opt. Commun. 2015, 343, 10–21. [Google Scholar] [CrossRef]
- Kong, D.; Cao, L.; Jin, G.; Javidi, B. Three-dimensional scene encryption and display based on computer-generated holograms. Appl. Opt. 2016, 55, 8296–8300. [Google Scholar] [CrossRef]
- Chatterjee, A.; Dhanotia, J.; Bhatia, V.; Prakash, S. Virtual Optical Encryption Using Phase Shifted Digital Holography and Rsa Algorithm. In Proceedings of the 2018 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, 9–11 February 2018; pp. 1–2. [Google Scholar]
- Chang, H.T.; Wang, Y.-T.; Chen, C.-Y. Angle Multiplexing Optical Image Encryption in the Fresnel Transform Domain Using Phase-only Computer-Generated Hologram. Photonics 2020, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Tay, C.J.; Quan, C.; Chen, W.; Fu, Y. Color image encryption based on interference and virtual optics. Opt. Laser Technol. 2010, 42, 409–415. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Liu, G. Three-dimensional display using computer-generated hologram based on virtual optics. Optik 2010, 121, 1395–1400. [Google Scholar] [CrossRef]
- Seo, Y.-H.; Choi, H.-J.; Bae, J.-W.; Kang, H.-J.; Lee, S.-H.; Yoo, J.-S.; Kim, D.-W. A new coding technique for digital holographic video using multi-view prediction. IEICE Trans. Inform. Syst. 2007, 90, 118–125. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Kaliski, B.; Staddon, J. Pkcs# 1: Rsa Cryptography Specifications Version 2.0. Available online: https://www.hjp.at/doc/rfc/rfc2437.html. (accessed on 18 September 2020).
- Wiener, M.J. Cryptanalysis of short rsa secret exponents. IEEE Trans. Inform. Theory 1990, 36, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Kuwakado, H.; Koyama, K.; Tsuruoka, Y. A new rsa-type scheme based on singular cubic curves y 2 < cd02261. Gif > x 3 + bx 2 (mod n). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 1995, 78, 27–33. [Google Scholar]
- Elkamchouchi, H.; Elshenawy, K.; Shaban, H. Extended rsa cryptosystem and digital signature schemes in the domain of gaussian integers. In Proceedings of the 8th International Conference on Communication Systems, Singapore, 28 November 2002. [Google Scholar]
- Castagnos, G. An efficient probabilistic public-key cryptosystem over quadratic fields quotients. Finite Fields Their Appl. 2007, 13, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, P. Basics of Holography; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Farr, N.; Bowen, A.; Ware, J.; Pontbriand, C.; Tivey, M. An Integrated, Underwater Optical/Acoustic Communications System. In Proceedings of the Oceans’10 IEEE Sydney, Sydney, Australia, 24–27 May 2010. [Google Scholar]
- Bandres, M.A.; Gutiérrez-Vega, J.C. Ince–gaussian beams. Opt. Lett. 2004, 29, 144–146. [Google Scholar] [CrossRef]
- O’Shea, D.C.; Suleski, T.J.; Kathman, A.D.; Prather, D.W. Diffractive Optics: Design, Fabrication, and Test; SPIE Press: Bellingham, WA, USA, 2004; Volume 62. [Google Scholar]
- Wang, W.-C.; Huang, C.-h.; Sung, P.-C.; Li, M.-H. Optical Interferometric Apparatus for Real-Time Full-Field Thickness Inspection and Method Thereof. U.S. Patent 9644947B2, 9 May 2017. [Google Scholar]
- Yue, Z.; Xue, G.; Liu, J.; Wang, Y.; Gu, M. Nanometric holograms based on a topological insulator material. Nat. Commun. 2017, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bányász, I. Refractive index modulation vs. Before-bleach optical density modulation characteristics of silver halide phase holograms. Opt. Commun. 2005, 244, 79–91. [Google Scholar] [CrossRef]
- Yang, P.; Nagase, T. Analysis of a virtual optical encryption holographic system: Decrypted code using the multiple-bit virtual optical encryption holographic system based on the comsol multiphysics. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4 November 2019. [Google Scholar]
- Stergiopoulos, G.; Kandias, M.; Gritzalis, D. Approaching encryption through complex number logarithms. In Proceedings of the 2013 International Conference on Security and Cryptography (SECRYPT), Reykjavik, Lceland, 29–31 July 2013. [Google Scholar]
- Anand, P.R.; Bajpai, G.; Bhaskar, V. Real-time symmetric cryptography using quaternion julia set. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2009, 9, 20–26. [Google Scholar]
- Pollard, J.M. A monte carlo method for factorization. BIT Numer. Math. 1975, 15, 331–334. [Google Scholar] [CrossRef]
- Efremidis, N.K.; Chen, Z.; Segev, M.; Christodoulides, D.N. Airy beams and accelerating waves: An overview of recent advances. Optica 2019, 6, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Wackerly, D.; Mendenhall, W.; Scheaffer, R.L. Mathematical Statistics with Applications; Cengage: Boston, MA, USA, 2014. [Google Scholar]
- Swathika, E.; Karthika, N.; Janet, B. Image encryption and decryption using chaotic system. In Proceedings of the 2019 IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India, 13–14 December 2019. [Google Scholar]
- Pareschi, F.; Rovatti, R.; Setti, G. On statistical tests for randomness included in the nist sp800-22 test suite and based on the binomial distribution. IEEE Trans. Inform. Forensics Secur. 2012, 7, 491–505. [Google Scholar] [CrossRef]
Algorithm | Modulus N | The Size of Key |
---|---|---|
RSA | Len(x) | |
ERSA | Len(x) + Len(y) |
Test Items | ERSA | RSA | |
---|---|---|---|
p-Value | p-Value | ||
1 | Frequency | 0.548506 | 0.423711 |
2 | Block frequency | 0.548506 | 0.423711 |
3 | Cumulative sums | 0.958638 | 0.322973 |
4 | Runs | 0.661694 | 0.203323 |
5 | Longest run | 0.810056 | 0.732505 |
6 | Rank | 0.000000 | 0.000000 |
7 | Approximate entropy | 0.758892 | 0.322153 |
8 | Serial | 0.999877 | 0.498531 |
9 | Linear complexity | 0.000000 | 0.000000 |
10 | FFT | 0.646355 | 0.168669 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Nagase, T.; You, S.; Kanamoto, T. A VOHE System for Underwater Communications. Electronics 2020, 9, 1557. https://doi.org/10.3390/electronics9101557
Peng Y, Nagase T, You S, Kanamoto T. A VOHE System for Underwater Communications. Electronics. 2020; 9(10):1557. https://doi.org/10.3390/electronics9101557
Chicago/Turabian StylePeng, Yang, Tomoyuki Nagase, Shan You, and Toshiki Kanamoto. 2020. "A VOHE System for Underwater Communications" Electronics 9, no. 10: 1557. https://doi.org/10.3390/electronics9101557
APA StylePeng, Y., Nagase, T., You, S., & Kanamoto, T. (2020). A VOHE System for Underwater Communications. Electronics, 9(10), 1557. https://doi.org/10.3390/electronics9101557