Partial Isolation Type Buried Channel Array Transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor
Abstract
:1. Introduction
2. Device Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, K. Future Silicon Technology. In Proceedings of the 2012 Proceedings of the ESSCIRC(ESSCIRC), Bordeaux, France, 17–21 September 2012; pp. 1–6. [Google Scholar]
- Hong, S. Memory Technology Trend and Future Challenges. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 1–4. [Google Scholar]
- Duvvury, C. A guide to short-channel effects in MOSFETs. IEEE Circuits Devices Mag. 1986, 2, 6–10. [Google Scholar] [CrossRef]
- Chaudhry, A.; Jagadesh, M.K. Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review. IEEE Trans. Device Mater. Reliab. 2004, 4, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Lee, C.S.; Kim, S.E.; Chung, I.B.; Choi, Y.M.; Park, B.J.; Lee, J.W.; Kim, D.I.; Hwang, Y.S.; Hwang, D.S. The Breakthrough in data retention time of DRAM using Recess-Channel-Array Transistor(RCAT) for 88nm feature size and beyond. In Proceedings of the 2003 Symposium on VLSI Technology, Kyoto, Japan, 10–12 June 2003; pp. 11–12. [Google Scholar]
- Kim, L.J.Y.; Oh, H.J.; Lee, D.S.; Kim, D.H.; Kim, S.E.; Ha, G.W.; Kim, H.J.; Kang, N.J.; Park, J.M.; Hwang, Y.S. S-RCAT (sphere-shaped-recess channel-array transistor) technology for 70 nm DRAM feature size and beyond. In Proceedings of the VLSI Symposium, Kyoto, Japan, 14–16 June 2005; pp. 34–35. [Google Scholar]
- Kondo, M.; Katsumata, R.; Aochi, H.; Hamamoto, T.; Ito, S.; Aoki, N.; Wada, T. A FinFET design based on three-dimensional process and device simulations. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices, Boston, MA, USA, 3–5 September 2003; pp. 179–182. [Google Scholar]
- Mahmoud, S.B.; Issa, H.H.; Saleh, M.E.; Ragai, H.F. Low Leakage Current Symmetrical Dual-k 7 nm Trigate Bulk Underlap FinFET for Ultra Low Power Applications. IEEE Access 2019, 7, 17256–17262. [Google Scholar]
- Chung, S.W.; Lee, S.D.; Jang, S.A.; Yoo, M.S.; Kim, K.O.; Chung, C.O.; Cho, S.Y.; Cho, H.J.; Lee, L.H.; Hwang, S.H. Highly scalable saddle-fin (S-Fin) transistor for sub 50 nm DRAM technology. In Proceedings of the VLSI Symposium, Honololu, HI, USA, 13–15 June 2006; pp. 147–148. [Google Scholar]
- Poljak, M.; Jovanovic, V.; Suligoj, T. Improving bulk FinFET DC performance in comparison to SOI FinFET. Microelectron. Eng. 2009, 86, 2078–2085. [Google Scholar] [CrossRef]
- Crupi, G.; Schreurs, D.; Raskin, J.P.; Caddemi, A. A comprehensive review on microwave FinFET modeling for progressing beyond the state of art. Solid State Electron. 2013, 80, 81–95. [Google Scholar] [CrossRef]
- Kerber, P.; Zhang, Q.; Koswatta, S.; Bryant, A. GIDL in Doped and Undoped FinFET Devices for Low-Leakage Applications. IEEE Electron Device Lett. 2013, 34, 6–8. [Google Scholar] [CrossRef]
- Lee, M.J.; Jin, S.H.; Baek, C.K.; Hong, S.M.; Park, S.Y.; Park, H.H.; Lee, S.D.; Chung, S.W.; Jeong, J.G.; Hong, S.G. A proposal on an optimized device structure with experimental studies on recent devices for the DRAM cell transistor. IEEE Trans. Electron Devices 2007, 54, 3325–3335. [Google Scholar] [CrossRef]
- Ryu, S.W.; Min, K.; Shin, J.; Kwon, H.; Nam, D.; Oh, T.; Jang, T.S.; Yoo, M.; Kim, Y.; Hong, S. Overcoming the reliability limitation in the ultimately scaled DRAM using silicon migration technique by hydrogen anneling. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 6.1–6.4. [Google Scholar]
- Schloesser, T.; Jakubowski, F.; van Kluge, J.; Graham, A.; Slesazeck, S.; Popp, M.; Baars, P.; Muemmler, K.; Moll, P.; Wilson, K. A 6F2 Buried Wordline DRAM Cell for 40nm and Beyond. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008. [Google Scholar]
- Kang, J.; Cao, W.; Pal, A.; Pandey, S.; Kramer, S.; Hill, R.; Sandhu, G.; Banerjee, K. Computational study of gate-induced drain leakage in 2D-semiconductor field-effect transistors. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 2.1–2.4. [Google Scholar]
- Hwang, Y.; Park, J.; Jin, G.; Chung, C. An Overview and Future Challenges of High Density DRAM for 20nm and Beyond. In Proceedings of the Extended Abstracts of the 2012 International Conference on Solid State Devices and Materials, Kyoto, Japan, 25–27 September 2012; The Japan Society of Applied Physics: Tokyo, Japan, 2012; pp. 586–587. [Google Scholar]
- Oh, C.W.; Yeo, K.H.; Kim, M.S.; Lee, C.-S.; Choi, D.U.; Kim, S.H.; Lee, S.-Y.; Kim, S.-M.; Choe, J.-D.; Lee, Y.K. Electrical Characterization of Partially Insulated MOSFETs with Buried Insulators under Source/Drain Regions. In Proceedings of the 30th European Solid-State Circuits Conference, Leuven, Belgium, 21–23 September 2004; pp. 233–236. [Google Scholar]
- Lee, M.J.; Cho, J.H.; Lee, S.D.; Ahn, J.H.; Kim, J.W.; Park, S.W.; Park, Y.J.; Min, H.S. Partial SOI Type Isolation for Improvement of DRAM Cell Transistor Characteristics. IEEE Electron Device Lett. 2005, 26, 332–334. [Google Scholar]
- Park, J.-M.; Sohn, S.-O.; Park, J.-S.; Han, S.-Y.; Lee, J.-B.; Kim, W.; Jeon, C.-H.; Kim, S.-D.; Kimt, Y.-P.; Lee, Y.-S. A Novel Body Effect Reduction Technique to Recessed Channel Transistor Featuring Partially Insulating Layer Under Source and Drain: Application to Sub-50nm DRAM Cell. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 903–906. [Google Scholar]
- Park, J.-S.; Park, J.-M.; Han, S.-Y.; Yamada, S.; Roh, Y.-H.; Park, D.-G. Bulk-FinFETs implementing insulating layer under source and drain for DRAM cell application. Electron Lett. 2008, 44, 824–825. [Google Scholar] [CrossRef]
- Ahn, S.J.; Jung, G.T.; Cho, C.H.; Shin, S.H.; Lee, J.Y.; Lee, J.G.; Jeong, H.S.; Kim, K. Novel DRAM cell transistor with asymmetric source and drain junction profiles improving data retention characteristics. In Proceedings of the 2002 Symposium on VLSI Technology, Honolulu, HI, USA, 11–15 June 2002; pp. 176–177. [Google Scholar]
- Park, H.; Choi, B. A study on the performance of metal-oxide-semiconductor-field-effect-transistors with asymmetric junction doping structure. Curr. Appl. Phys. 2012, 12, 1503–1509. [Google Scholar] [CrossRef]
- Cho, M.H.; Jeon, N.; Kim, T.Y.; Jeong, M.; Lee, S.; Hong, J.S.; Hong, H.S.; Yamada, S. An Innovative Indicator to Evaluate DRAM Cell Transistor Leakage Current Distribution. IEEE J. Electron Devices Soc. 2017, 6, 494–499. [Google Scholar] [CrossRef]
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 1992, 39, 331–338. [Google Scholar] [CrossRef]
- Jin, S.; Lee, M.J.; Yi, J.H.; Choi, J.H.; Kang, D.G.; Chung, I.Y.; Park, Y.J.; Min, H.S. A new direct evaluation method to obtain the data retention time distribution of DRAM. IEEE Trans. Electron Devices 2006, 53, 2344–2350. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, J.S.; Kim, G.; Park, T.; Kim, H.J.; Cho, Y.P.; Park, Y.J.; Lee, M.J. Partial Isolation Type Saddle-FinFET(Pi-FinFET) for Sub-30 nm DRAM Cell Transistors. Electronics 2019, 8, 8. [Google Scholar] [CrossRef] [Green Version]
Gate Depth Optimal Value | 70 nm | 80 nm | 90 nm |
---|---|---|---|
Lin | 5 nm | 5.5 nm | 5.75 nm |
Silicon film thickness | 50 nm | 60 nm | 70 nm |
Ion_Pi-BCAT | 2.21 × 10−6 A | 2.25 × 10−6 A | 2.31 × 10−6 A |
Ioff_Pi-BCAT | 5.44 × 10−14 A | 1.98 × 10−14 A | 7.50 × 10−14 A |
Ion_Pi-BCAT/Ion_Asymmetry BCAT | 80% | 80% | 80% |
Ioff_Pi-BCAT/Ioff_Asymmetry BCAT | 38% | 33% | 38% |
SSAsymmetry BCAT | 65.0 mV/dec | 65.4 mV/dec | 66.0 mV/dec |
SSPi- BCAT | 66.225 mV/dec | 66.475 mV/dec | 66.725 mV/dec |
gm.max:_Asymmetry BCAT | 7.22 × 10−6 A/V | 7.40 × 10−6 A/V | 7.64 × 10−6 A/V |
gm.max:_Pi-BCAT | 5.74 × 10−6 A/V | 6.00 × 10−6 A/V | 6.16 × 10−6 A/V |
DIBLAsymmetry_BCAT | 1.81 mV/V | 3.63 mV/V | 4.73 mV/V |
DIBLPi-BCAT | 0.45 mV/V | 0.95 mV/V | 1.45 mV/V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-s.; Park, J.-h.; Kim, G.; Choi, H.D.; Lee, M.J. Partial Isolation Type Buried Channel Array Transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor. Electronics 2020, 9, 1908. https://doi.org/10.3390/electronics9111908
Lee J-s, Park J-h, Kim G, Choi HD, Lee MJ. Partial Isolation Type Buried Channel Array Transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor. Electronics. 2020; 9(11):1908. https://doi.org/10.3390/electronics9111908
Chicago/Turabian StyleLee, Jin-sung, Jin-hyo Park, Geon Kim, Hyun Duck Choi, and Myoung Jin Lee. 2020. "Partial Isolation Type Buried Channel Array Transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor" Electronics 9, no. 11: 1908. https://doi.org/10.3390/electronics9111908
APA StyleLee, J. -s., Park, J. -h., Kim, G., Choi, H. D., & Lee, M. J. (2020). Partial Isolation Type Buried Channel Array Transistor (Pi-BCAT) for a Sub-20 nm DRAM Cell Transistor. Electronics, 9(11), 1908. https://doi.org/10.3390/electronics9111908