Analysis of State-of-the-Art Spin-Transfer-Torque Nonvolatile Flip-Flops Considering Restore Yield in the Near/Sub-Threshold Voltage Region
Abstract
:1. Introduction
2. State-of-the-Art STT-MTJ-Based NVFFs
3. Simulation Results and Comparison
3.1. Simulation Conditions
3.2. Simulation Results and Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chakravarthi, V.S.; Ghosh, S. Circuit Design Methodologies for Test Power Reduction in Nano-Scaled Technologies. In Proceedings of the International Conference on VLSI, Communication, Advanced Devices, Signals & Systems and Networking (VCASAN-2013); Lecture Notes in Electrical Engineering; Springer: New Delhi, India, 2013; Volume 258, pp. 139–149. [Google Scholar]
- Boeck, J.D. IoT: The Impact of Things. In Proceedings of the Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T82–T83. [Google Scholar]
- Shigematsu, S.; Mutoh, S.; Matsuya, Y.; Tanabe, Y.; Yamada, J. A 1-V high-speed MTCMOS circuit scheme for power-down application circuits. IEEE J. Solid-State Circuits 1997, 32, 861–869. [Google Scholar] [CrossRef]
- Calhoun, B.; Honore, F.; Chandrakasan, A. A leakage reduction methodology for distributed MTCMOS. IEEE J. Solid-State Circuits 2004, 39, 818–826. [Google Scholar] [CrossRef]
- Kawahara, T.; Takemura, R.; Miura, K.; Hayakawa, J.; Ikeda, S.; Lee, Y.M.; Sasaki, R.; Goto, Y.; Ito, K.; Meguro, T.; et al. 2 Mb SPRAM (SPin-Transfer Torque RAM) With Bit-by-Bit Bi-Directional Current Write and Parallelizing-Direction Current Read. IEEE J. Solid-State Circuits 2008, 43, 109–120. [Google Scholar] [CrossRef]
- Bishnoi, R.; Ebrahimi, M.; Oboril, F.; Tahoori, M.B. Improving Write Performance for STT-MRAM. IEEE Trans. Magn. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Ono, K.; Kawahara, T.; Takemura, R.; Miura, K.; Yamamoto, H.; Yamanouchi, M.; Hayakawa, J.; Ito, K.; Takahashi, H.; Ikeda, S.; et al. A disturbance-free read scheme and a compact stochastic-spin-dynamics-based MTJ circuit model for Gb-scale SPRAM. In Proceedings of the 2009 IEEE International Electron Devices Meeting, Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Na, T.; Kim, J.P.; Kang, S.H.; Jung, S.-O. Read Disturbance Reduction Technique for Offset-Canceling Dual-Stage Sensing Circuits in Deep Submicrometer STT-RAM. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 578–582. [Google Scholar] [CrossRef]
- Na, T.; Kim, J.; Kim, J.P.; Kang, S.H.; Jung, S.-O. Reference-Scheme Study and Novel Reference Scheme for Deep Submicrometer STT-RAM. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 3376–3385. [Google Scholar] [CrossRef]
- Na, T.; Ryu, K.; Kim, J.; Jung, S.-O.; Kim, J.P.; Kang, S.H. High-performance low-power magnetic tunnel junction based non-volatile flip-flop. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 1953–1956. [Google Scholar]
- Song, B.; Choi, S.; Kang, S.H.; Jung, S.-O. Offset-Cancellation Sensing-Circuit-Based Nonvolatile Flip-Flop Operating in Near-Threshold Voltage Region. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2963–2972. [Google Scholar] [CrossRef]
- Na, T. Robust Offset-Cancellation Sensing-Circuit-Based Spin-Transfer-Torque Nonvolatile Flip-Flop. IEEE Access 2020, 8, 159806–159815. [Google Scholar] [CrossRef]
- Choi, G.H.; Na, T. Novel MTJ-Based Sensing Inverter Variation Tolerant Nonvolatile Flip-Flop in the Near-Threshold Voltage Region. IEEE Access 2020, 8, 191057–191066. [Google Scholar] [CrossRef]
- Sakimura, N.; Sugibayashi, T.; Nebashi, R.; Kasai, N. Nonvolatile Magnetic Flip-Flop for Standby-Power-Free SoCs. IEEE J. Solid-State Circuits 2009, 44, 2244–2250. [Google Scholar] [CrossRef]
- Sakimura, N.; Tsuji, Y.; Nebashi, R.; Honjo, H.; Morioka, A.; Ishihara, K.; Kinoshita, K.; Fukami, S.; Miura, S.; Kasai, N.; et al. A 90 nm 20 MHz Fully Nonvolatile Microcontroller for Standby-Power-Critical Applications. Int. Solid-State Circuits Conf. 2014, 184–185. [Google Scholar] [CrossRef]
- Zhao, W.; Chappert, C.; Javerliac, V.; Noziere, J.-P. High Speed, High Stability and Low Power Sensing Amplifier for MTJ/CMOS Hybrid Logic Circuits. IEEE Trans. Magn. 2009, 45, 3784–3787. [Google Scholar] [CrossRef]
- Ryu, K.; Kim, J.; Jung, J.; Kim, J.P.; Kang, S.H.; Jung, S.-O. A Magnetic Tunnel Junction Based Zero Standby Leakage Current Retention Flip-Flop. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 20, 2044–2053. [Google Scholar] [CrossRef]
- Na, T.; Ryu, K.; Kim, J.; Kang, S.H.; Jung, S.-O. A Comparative Study of STT-MTJ based Non-Volatile Flip-Flops. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 109–112. [Google Scholar]
- Jung, Y.; Kim, J.; Ryu, K.; Kim, J.P.; Kang, S.H.; Jung, S.-O. An MTJ-based non-volatile flip-flop for high-performance SoC. Int. J. Circuit Theory Appl. 2012, 42, 394–406. [Google Scholar] [CrossRef]
- Chabi, D.; Zhao, W.; Deng, E.; Zhang, Y.; Ben Romdhane, N.; Klein, J.-O.; Chappert, C. Ultra Low Power Magnetic Flip-Flop Based on Checkpointing/Power Gating and Self-Enable Mechanisms. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1755–1765. [Google Scholar] [CrossRef]
- Kazemi, M.; Ipek, E.; Friedman, E.G. Energy-Efficient Nonvolatile Flip-Flop with Subnanosecond Data Backup Time for Fine-Grain Power Gating. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 1154–1158. [Google Scholar] [CrossRef]
- Iyengar, A.S.; Ghosh, S.; Jang, J.-W. MTJ-Based State Retentive Flip-Flop With Enhanced-Scan Capability to Sustain Sudden Power Failure. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2062–2068. [Google Scholar] [CrossRef]
- Bishnoi, R.; Oboril, F.; Tahoori, M.B. Design of Defect and Fault-Tolerant Nonvolatile Spintronic Flip-Flops. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 1421–1432. [Google Scholar] [CrossRef]
- Seo, Y.; Fong, X.; Roy, K. Fast and Disturb-Free Nonvolatile Flip-Flop using Complementary Polarizer MTJ. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 1573–1577. [Google Scholar] [CrossRef]
- Kwon, K.-W.; Choday, S.H.; Kim, Y.; Fong, X.; Park, S.P.; Roy, K. SHE-NVFF: Spin Hall Effect-based Nonvolatile Flip-Flop for Power Gating Architecture. IEEE Electron Device Lett. 2014, 35, 488–490. [Google Scholar] [CrossRef]
- Ali, K.; Li, F.; Lua, S.Y.H.; Heng, C.-H. Energy- and Area-Efficient Spin–Orbit Torque Nonvolatile Flip-Flop for Power Gating Architecture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 630–638. [Google Scholar] [CrossRef]
- Kazi, I.; Meinerzhagen, P.; Gaillardon, P.-E.; Sacchetto, D.; Leblebici, Y.; Burg, A.; Micheli, G.D. Energy/Reliability Trade-Offs in Low-Voltage ReRAM-based Non-Volatile Flip-Flop Design. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 3155–3164. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Z.; Lee, A.; Su, F.; Lo, C.; Yuan, Z.; Lin, C.; Wei, Q.; Wang, Y.; King, Y.; et al. A 65 nm ReRAM-enabled Nonvolatile Processor with 6× Reduction in Restore Time and 4× Higher Clock Frequency using Adaptive Data Retention and Self-Write-Termination Nonvolatile Logic. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 84–86. [Google Scholar]
- Lo, C.-P.; Chen, W.; Wang, Z.; Lee, A.; Hsu, K.; Su, F.; King, Y.; Lin, C.J.; Liu, Y.; Yang, H.; et al. A ReRAM-based Single-NVM Nonvolatile Flip-Flop with Reduced Stress-Time and Write-Power Against Wide Distribution in Write-time by Using Self-Write-Termination Scheme for Nonvolatile Processors in IoT Era. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 1–4. [Google Scholar]
- Lee, A.; Lo, C.P.; Lin, C.C.; Chen, W.H.; Hsu, K.H.; Wang, Z.; Su, F.; Yuan, Z.; Wei, Q.; King, Y.C.; et al. A ReRAM-based Nonvolatile Flip-Flop with Self-Write Termination Scheme for Frequent-OFF Fast-Wake-Up Nonvolatile Processors. IEEE J. Solid-State Circuits 2017, 52, 2194–2207. [Google Scholar] [CrossRef]
- Bartling, S.C.; Khanna, S.; Clinton, M.; Summerfelt, S.; Rodriguez, J.; McAdams, H. An 8 MHz 75 μA/MHz Zero-Leakage Non-Volatile Logic-Based Cortex-M0 MCU SoC Exhibiting 100% Digital State Retention at VDD = 0 V with <400 ns Wakeup and Sleep Transitions. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 432–433. [Google Scholar]
- Qazi, M.; Qazi, M.; Amerasekera, A.; Chandrakasan, A. A 3.4-pJ FeRAM-enabled D Flip-Flop in 0.13-μm CMOS for Nonvolatile Processing in Digital Systems. IEEE J. Solid-State Circuits 2014, 49, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Bartling, S.; Clinton, M.; Summerfelt, S.; Rodriguez, J.; McAdams, H. An FRAM-based Nonvolatile Logic MCU SoC Exhibiting 100% Digital State Retention at VDD = 0 V Achieving Zero Leakage with <400-ns Wakeup Time for ULP Applications. IEEE J. Solid-State Circuits 2014, 49, 95–106. [Google Scholar] [CrossRef]
- Su, F.; Liu, Y.; Wang, Y.; Yang, H. A Ferroelectric Nonvolatile Processor with 46 µs System-Level Wake-Up Time and 14 µs Sleep Time for Energy Harvesting Applications for Energy Harvesting Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 596–607. [Google Scholar] [CrossRef]
- Li, X.; Ma, K.; George, S.; Khwa, W.-S.; Sampson, J.; Gupta, S.; Liu, Y.; Chang, M.-F.; Datta, S.; Narayanan, V. Design of Nonvolatile SRAM with Ferroelectric FETs for Energy-Efficient Backup and Restore. IEEE Trans. Electron Devices 2017, 64, 3037–3040. [Google Scholar] [CrossRef]
- Saki, A.A.; Lin, S.H.; Alam, M.; Thirumala, S.K.; Gupta, S.K.; Ghosh, S. A Family of Compact Non-Volatile Flip-Flops with Ferroelectric FET. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4219–4229. [Google Scholar] [CrossRef]
- Lee, K.; Kang, S.H. Development of Embedded STT-MRAM for Mobile System-On-Chips. IEEE Trans. Magn. 2011, 47, 131–136. [Google Scholar] [CrossRef]
- Rizzo, N. Toggle and Spin Torque: MRAM at Everspin Technologies. In Proceedings of the Non-Volatile Memories Workshop, University of California, San Diego, CA, USA, 11–13 April 2010. [Google Scholar]
- Kang, S.H. Embedded STT-MRAM for Advanced Mobile System-on-Chips. In Proceedings of the 2nd CSIS International Symposium on Spintronics-Based VLSIs, Cambridge, UK, 19–25 September 2012; pp. 1–23. [Google Scholar]
T. Na, ISCAS 14′ [10] | B. Song, TCAS-1 19′ [11] | T. Na, IEEE ACCESS 20′ [12] | G. H. Choi, IEEE ACCESS 20′ [13] | |
---|---|---|---|---|
VDD [V] | 0.6 | 0.6 | 0.6 | 0.6 |
Default size | ×1 | ×1 | ×1 | ×1 |
MTJ stress time [ns] | 0.9 | 0.9 | 0.9 | 0.9 |
Restore yield [σ] | 2.0 | 2.1 | 4.4 | 4.2 |
Circuit Complexity | Simple (no offset tolerance) | Complex (less offset tolerance) | Complex (offset tolerance) | Complex (offset tolerance) |
T. Na, ISCAS 14′ [10] | B. Song, TCAS-1 19′ [11] | T. Na, IEEE ACCESS 20′ [12] | G. H. Choi, IEEE ACCESS 20′ [13] | |
---|---|---|---|---|
VDD [V] | 0.4 | 0.4 | 0.4 | 0.4 |
Default size | ×4 | ×4 | ×4 | ×4 |
MTJ stress time [ns] | 1.5 | 1.5 | 1.5 | 1.5 |
Restore yield [σ] | 3.5 | 0 | 0 | 0 |
Circuit Complexity | Simple (no offset tolerance) | Complex (less offset tolerance) | Complex (offset tolerance) | Complex (offset tolerance) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.H.; Na, T. Analysis of State-of-the-Art Spin-Transfer-Torque Nonvolatile Flip-Flops Considering Restore Yield in the Near/Sub-Threshold Voltage Region. Electronics 2020, 9, 2118. https://doi.org/10.3390/electronics9122118
Choi GH, Na T. Analysis of State-of-the-Art Spin-Transfer-Torque Nonvolatile Flip-Flops Considering Restore Yield in the Near/Sub-Threshold Voltage Region. Electronics. 2020; 9(12):2118. https://doi.org/10.3390/electronics9122118
Chicago/Turabian StyleChoi, Gwang Hui, and Taehui Na. 2020. "Analysis of State-of-the-Art Spin-Transfer-Torque Nonvolatile Flip-Flops Considering Restore Yield in the Near/Sub-Threshold Voltage Region" Electronics 9, no. 12: 2118. https://doi.org/10.3390/electronics9122118
APA StyleChoi, G. H., & Na, T. (2020). Analysis of State-of-the-Art Spin-Transfer-Torque Nonvolatile Flip-Flops Considering Restore Yield in the Near/Sub-Threshold Voltage Region. Electronics, 9(12), 2118. https://doi.org/10.3390/electronics9122118