CMOS Analog Filter Design for Very High Frequency Applications
Abstract
:1. Introduction
2. Q Enhanced gm-C Filters
2.1. Formulation of the SFG from a Filter Transfer Function
2.2. Synthesis of gm-C Biquad Filters Based on SFGs
- the forward pathway in every single loop has to be pulled apart into two twigs, one with a path weight , and the other with a path weight . The subscript j denotes the j-th transconductance and capacitive reactance along the straight path from node input to node output. Namely, the integrator on the graph is compounded by the product of a transconductance and the reactance of a capacitor.
- the split-up of the j-th forward pathway within the loops along the graph is achieved by the inclusion of a current node, with , between the voltage nodes which surround the signal flow on the forth path.
2.3. Increasing Selectivity by SFG Manipulation
3. An RF Biquad Notch Filter for Jammer
3.1. The biquad -C Notch Filter Derived from SFG Synthesis
3.2. The Alternative Filter Solution Based on Active Simulation of Passive LC Networks
4. Simulation Results
4.1. Post Layout Simulation
4.2. Monte Carlo Simulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eastman, A.V. The Application of Filter Theory to the Design of Reactance Networks. Proc. IRE 1944, 9, 538–546. [Google Scholar] [CrossRef]
- Belevitch, V. Recent Developments in Filter Theory. IRE Trans. Circuit Theory 1958, 4, 236–252. [Google Scholar] [CrossRef]
- Belevitch, V. Summary of the History of Circuit Theory. Proc. IRE 1962, 5, 848–855. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Tsai, W.-C.; Shih, Y.-J.; Huang, N.-T. Hardware-Accelerated, Short-Term Processing Voice and Nonvoice Sound Recognitions for Electric Equipment Control. Electronics 2019, 9, 924. [Google Scholar] [CrossRef] [Green Version]
- Camarena, J.-G.; Gregori, V.; Morillas, S.; Sapena, A. Some improvements for image filtering using peer group techniques. Elsevier Image Vis. Comput. 2010, 1, 188–201. [Google Scholar] [CrossRef]
- Tan, L.; Pugh, A.C.; Yin, M. Rate-based congestion control in ATM switching networks using a recursive digital filter. Elsevier Control Eng. Pract. 2003, 10, 1171–1181. [Google Scholar]
- Wang, B.; Cao, Z. A Review of Impedance Matching Techniques in Power Line Communications. Electronics 2019, 8, 1022. [Google Scholar] [CrossRef] [Green Version]
- Chinnasamy, C.; Malallah, Y.; Jasinski, M.M.; Daryoush, A.S. Synthesis of high magnetic moment soft magnetic nanocomposite powders for RF filters and antennas. Elsevier Appl. Surf. Sci. 2015, 334, 58–61. [Google Scholar] [CrossRef]
- Xu, L.; Feng, D.; Wang, X. Matched-filter properties of linear-frequency-modulation radar signal reflected from a phase-switched screen. IET Radar Sonar Navig. 2016, 2, 318–324. [Google Scholar] [CrossRef]
- Saberkari, A. Active inductor-based tunable impedance matching network for RF power amplifier application. Elsevier Integr. VLSI J. 2016, 52, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Piccinni, G.; Talarico, C.; Avitabile, G.; Coviello, G. Innovative Strategy for Mixer Design Optimization Based on gm/ID Methodology. Electronics 2019, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Rachid, M.; Pamarti, S.; Daneshrad, B. Filtering by Aliasing. IEEE Trans. Signal Process. 2013, 9, 2319–2327. [Google Scholar]
- Fox, R. Continuous-time filters. In Trade-Offs in Analog Circuit Design: The Designers Companion; Toumazou, C., Moschytz, G.S., Gilbert, B., Eds.; Kluwer Academic Publishers: Berlin, Germany, 2002; pp. 344–347. [Google Scholar]
- Nauta, B. Analog CMOS Filters for Very High Frequencies. Ph.D. Thesis, Twente Universiteit, Enschede, The Netherlands, 1991. [Google Scholar]
- Gee, W.A. CMOS Integrated LC Q-Enhanced RF Filters for Wireless Receivers. Ph.D. Thesis, ECE, GATECH, Atlanta, GA, USA, 2005. [Google Scholar]
- Nauta, B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits 1992, 2, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K. A 50- to 300-MHz CMOS Gmmbox-C Tracking Filter Based on Parallel Operation of Saturation and Triode Transconductors for Digital TV Tuner ICs. IEEE Trans. Circuits Syst. II Express Briefs 2015, 6, 522–526. [Google Scholar] [CrossRef]
- Acosta, L.; Jimenez, M.; Carvajal, R.G.; Lopez-Martin, A.J.; Ramirez-Angulo, J. Highly linear tunable CMOS gm-C low-pass filter. IEEE Trans. Circuits Syst.-I Regul. Pap. 2010, 10, 2145–2158. [Google Scholar] [CrossRef]
- Galan, J.; Pedro, M.; Sanchez-Rodriguez, T.; Munoz, F.; Carvajal, R.G. A Very Linear Low-Pass Filter with Automatic Frequency Tuning. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 1, 182–187. [Google Scholar] [CrossRef]
- Niknejad, A.M. Analysis, Simulation, and Applications of Passive Devices on Conductive Substrates. Ph.D. Thesis, EECS, UCB, Berkeley, CA, USA, 2000. [Google Scholar]
- Raut, R.; Swamy, M.N.S. Modern Analog Flter Analysis and Design: A Practical Approach, 1st ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 1–7. [Google Scholar]
- Lin, P.-M. Signal flow graphs in filter analysis and synthesis. In Circuit Analysis and Feedback Amplifier Theory; Chen, W.-K., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 4.1–4.20. [Google Scholar]
- Maloberti, F. Analog Design for CMOS VLSI Systems, 1st ed.; Kluwer Academic Publishers: Berlin, Germany, 2003. [Google Scholar]
- Ghaffari, A.; Klumperink, E.; Nauta, B. 8-path tunable RF notch filters for blocker suppression. In Proceedings of the International Conference on Solid-State Circuits (ISSCC 2012), San Francisco, CA, USA, 19–23 February 2012; pp. 76–78. [Google Scholar]
- Islam, M.N.; Yuce, M.R. Review of Medical Implant Communication System (MICS) Band and Network; Elsevier ICT Express: Wilnecote, UK, 2016. [Google Scholar]
- Mondal, I.; Krishnapura, N. Gain enhanced high frequency OTA with on-chip tuned negative conductance load. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Oslo, Norway, 26–28 October 2015; pp. 2085–2088. [Google Scholar]
- Dimopoulos, H.G. Even-Order Passive filters: Pascal versus Chebyshev. Wiley Int. J. Circuit Theory Appl. 2013, 9, 946–959. [Google Scholar] [CrossRef]
- Tran, H.-D.; Wang, H.Y.; Nguyen, Q.M.; Chiang, N.H.; Lin, W.C.; Lee, T.F. High-Q biquadratic notch filter synthesis using nodal admittance matrix expansion. Elsevier Int. J. Electron. Commun. (AEU) 2015, 7, 981–987. [Google Scholar] [CrossRef]
- Yehoshuva, C.; Reddy, B.N.; Ambati, V.R.; Pittala, S.K. A novel CMOS Gm-C complex filter design for multi-mode multi band wireless receiver applications. Springer Analog Integr. Circuits Signal Process. 2017, 1, 43–51. [Google Scholar] [CrossRef]
- Roja, K.; Santhoshini, K.M.; Sarada, M.; Srinivasulu, A. A constant Q-factor notch filter using voltage difference transconductance amplifier. Elsevier Solid State Electron. Lett. 2019, 1, 38–43. [Google Scholar]
- Psychogiou, D.; Gómez-García, R.; Peroulis, D. High-Q Bandstop Filters Exploiting Acoustic-Wave-Lumped-Element Resonators (AWLRs). IEEE Trans. Circuits Syst. II Express Briefs 2016, 1, 79–83. [Google Scholar] [CrossRef]
- Bult, K. The effect of technology scaling on power dissipation in analog circuits. In Analog Circuit Design, RF Circuits: Wide Band, Front-End, DACs, Design Methodology and Verification for RF and Mixed-Signal Systems, Low Power and Low Voltage; Steyaert, M., van Roermund, A.H.M., Huijsing, J.H., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 251–294. [Google Scholar]
- Jolivet, S.; Amiot, S.; Lohy, D.; Jarry, B.; Lintignat, J. A 45–470MHz Gm-C tunable RF bandpass filter for TV tuners designed in 65 nm CMOS. In Proceedings of the IEEE 9th International New Circuits and Systems Conference, Bordeaux, France, 26–29 June 2011; pp. 13–16. [Google Scholar]
- Lee, H.; Seo, H.; Choi, I.; Chung, T.; Jeong, D.; Kim, B. A RF CMOS band-pass tracking filter with enhanced Q and high linearity. In Proceedings of the Asia-Pacific Microwave Conference, Melbourne, Australia, 5–8 December2011; pp. 1901–1904. [Google Scholar]
- Nicholson, A.P.; Iberzanov, A.; Jenkins, J.; Hamilton, T.J.; Lehmann, T. A Statistical Design Approach for a Digitally Programmable Mismatch-Tolerant High-Speed Nauta Structure Differential OTA in 65-nm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 9, 2899–2910. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, X.S.; Lu, M.; Sun, Y.; Yeo, K.S. Design of reconfigurable dB-linear variable-gain amplifier and switchable-order gm-c filter in 65-nm CMOS technology. IEEE Trans. Microw. Theory Tech. 2019, 12, 5148–5158. [Google Scholar] [CrossRef]
Parameter | NAM a | AWLRs b | gm-C | VDTA c | FDNR d | SFG e |
---|---|---|---|---|---|---|
[28] | [31] | [29] | [30] | This Work | This Work | |
2 KHz | 418 MHz | 20 MHz | 4.867 MHz | 400 MHz | 400 MHz | |
Q | 50 | ≈10,000 | 20 | 1 | 31 | 20 |
Consumption | NR f | NR f | 580 µW | 540 µW | ≈220 mW | ≈52 mW |
Technology [µm] | 0.35CMOS | RO4003Csub. | 0.18CMOS | 0.18CMOS | 0.18CMOS g | 0.18CMOS g |
Type (order) | biquad (2) | BVD h (3) | gm-C (3) | biquad (2) | Elliptic (7) | biquad (2) |
Rejection | −60 dB | ≈−24 dB | ≈−40 dB | −60 dB | ≈−17 dB | ≈−17 dB |
Tuning | (1.5–2.5) KHz | not tunable | (10–25) MHz | NR f | (381.8–400) MHz | (394.2–400) MHz |
Distortion | NR f | NR f | NR f | NR f | m dBm | m dBm |
Sensitivity | NR f | NR f | NR f | NR f | j | k |
l | ||||||
Application | NR f | NR f | Bluetooth | NR f | MICS i | MICS i |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Gaspariano, L.A.; Muñiz-Montero, C.; Muñoz-Pacheco, J.M.; Sánchez-López, C.; Gómez-Pavón, L.d.C.; Luis-Ramos, A.; Bautista-Castillo, A.I. CMOS Analog Filter Design for Very High Frequency Applications. Electronics 2020, 9, 362. https://doi.org/10.3390/electronics9020362
Sánchez-Gaspariano LA, Muñiz-Montero C, Muñoz-Pacheco JM, Sánchez-López C, Gómez-Pavón LdC, Luis-Ramos A, Bautista-Castillo AI. CMOS Analog Filter Design for Very High Frequency Applications. Electronics. 2020; 9(2):362. https://doi.org/10.3390/electronics9020362
Chicago/Turabian StyleSánchez-Gaspariano, Luis Abraham, Carlos Muñiz-Montero, Jesús Manuel Muñoz-Pacheco, Carlos Sánchez-López, Luz del Carmen Gómez-Pavón, Arnulfo Luis-Ramos, and Alejandro Israel Bautista-Castillo. 2020. "CMOS Analog Filter Design for Very High Frequency Applications" Electronics 9, no. 2: 362. https://doi.org/10.3390/electronics9020362
APA StyleSánchez-Gaspariano, L. A., Muñiz-Montero, C., Muñoz-Pacheco, J. M., Sánchez-López, C., Gómez-Pavón, L. d. C., Luis-Ramos, A., & Bautista-Castillo, A. I. (2020). CMOS Analog Filter Design for Very High Frequency Applications. Electronics, 9(2), 362. https://doi.org/10.3390/electronics9020362