Assessment of Anchors Constellation Features in RSSI-Based Indoor Positioning Systems for Smart Environments
Abstract
:1. Introduction
2. Localization System Architecture
2.1. Front-End Architecture
2.2. Switched Beam Antenna Architecture
2.3. Mobile Tag Architecture
3. Distributed Positioning
3.1. The Position Estimation
3.2. Comparison between Triangular and Squared Shapes and Parameters
4. Impact of the Constellation Mesh Area on Localization Accuracy
4.1. Experimental Site
4.2. Simulation Results
4.3. Experimental Results
4.4. Discussion about the Simulated Positioning Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zekavat, R.; Bueher, R.M. Handbook of Position Location: Theory, Practice and Advances; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 27. [Google Scholar]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Pau, G.; Chaudet, C.; Zhao, D.; Collotta, M. Next Generation Wireless Technologies for Internet of Things. Sensors 2018, 18, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pita, R.; Utrilla, R.; Rodriguez-Zurrunero, R.; Araujo, A. Experimental Evaluation of an RSSI-Based Localization Algorithm on IoT End-Devices. Sensors 2019, 19, 3931. [Google Scholar] [CrossRef] [Green Version]
- Ferrández-Pastor, F.-J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoliu-Colás, R.; Sansano, E.; Gascó, A.; Belmonte, O.; Caballer, A. Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios. Electronics 2020, 9, 728. [Google Scholar] [CrossRef]
- Liu, M.; Cao, J.; Chen, G.; Wang, X. An Energy-Aware Routing Protocol in Wireless Sensor Networks. Sensors 2009, 9, 445–462. [Google Scholar] [CrossRef]
- Lin, X.; Bergman, J.; Gunnarsson, F.; Liberg, O.; Razavi, S.M.; Razaghi, H.S.; Rydn, H.; Sui, Y. Positioning for the Internet of Things: A 3GPP Perspective. IEEE Commun. Mag. 2017, 55, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.H.; Hsu, Y.L.; Lee, W.L.; Kuo, Y.C.; Chang, C.C.; Cheng, Y.S.; Lee, H.H. Development of a smart home system based on multi-sensor data fusion technology. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017. [Google Scholar]
- Hou, Y.; Yang, X.; Abbasi, Q.H. Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices. Sensors 2018, 18, 3698. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.F.E.; Kaseva, V.; Simona, L.E. Wireless Positioning in IoT: A Look at Current and Future Trends. Sensors 2018, 18, 2470. [Google Scholar] [CrossRef] [Green Version]
- Lymberopoulos, D.; Liu, J.; Yang, X.; Choudhury, R.R.; Handziski, V.; Sen, S. A realistic evaluation and comparison of indoor location technologies: Experiences and lessons learned. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks, Seattle, WA, USA, 14–16 April 2015. [Google Scholar]
- Chen, Z.; Zou, H.; Jiang, H.; Zhu, Q.; Soh, Y.C.; Xie, L. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization. Sensors 2015, 15, 715–732. [Google Scholar] [CrossRef]
- Yi, D.-H.; Lee, T.-J.; Cho, D.-I.D. A New Localization System for Indoor Service Robots in Low Luminance and Slippery Indoor Environment Using Afocal Optical Flow Sensor Based Sensor Fusion. Sensors 2018, 18, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddio, S.; Passafiume, M.; Cidronali, A.; Manes, G. A Distributed Positioning System Based on a Predictive Fingerprinting Method Enabling Sub-Metric Precision in IEEE 802.11 Networks. IEEE Trans. Microw. Theory Tech. 2015, 63, 4567–4580. [Google Scholar] [CrossRef]
- Passafiume, M.; Maddio, S.; Cidronali, A. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks. Sensors 2017, 17, 717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cidronali, A.; Collodi, G.; Lucarelli, M.; Maddio, S.; Passafiume, M.; Pelosi, G. Continuous Beam Steering For Phaseless Direction-of-Arrival Estimations. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2666–2670. [Google Scholar] [CrossRef]
- Deng, Z.-A.; Hu, Y.; Yu, J.; Na, Z. Extended Kalman Filter for Real Time Indoor Localization by Fusing WiFi and Smartphone Inertial Sensors. Micromachines 2015, 6, 523–543. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Yang, Z.; Liu, Y. Smartphones Based Crowdsourcing for Indoor Localization. IEEE Trans. Mob. Comput. 2015, 14, 444–457. [Google Scholar] [CrossRef]
- Hartmann, M.; Nowak, T.; Patino-Studencki, L.; Robert, J.; Heuberger, A.; Thielecke, J. A Low-Cost RSSI-Based Localization System for Wildlife Tracking. IOP Conf. Ser. Mater. Sci. Eng. 2016, 120, 012004. [Google Scholar] [CrossRef] [Green Version]
- Maddio, S.; Passafiume, M.; Cidronali, A.; Manes, G. Impact of the Dihedral Angle of Switched Beam Antennas in Indoor Positioning based on RSSI. In Proceedings of the 11th European Radar Conference (EuRAD), Rome, Italy, 6–9 October 2014; pp. 317–320. [Google Scholar]
- Maddio, S.; Cidronali, A.; Passafiume, M.; Collodi, G.; Maurri, S. Fine-grained azimuthal direction of arrival estimation using received signal strengths. Electron. Lett. 2017, 53, 687–689. [Google Scholar] [CrossRef]
- Cidronali, A.; Collodi, G.; Maddio, S.; Passafiume, M.; Pelosi, G. 2-D DoA Anchor Suitable for Indoor Positioning Systems Based on Space and Frequency Diversity for Legacy WLAN. IEEE Microw. Wirel. Components Lett. 2018, 28, 627–629. [Google Scholar] [CrossRef]
- Wu, D.; Cheung, S.W.; Yuk, T.I. A Compact and low-profile Loop Antenna with Multiband Operation for Ultra-thin Smartphones. IEEE Trans. Antennas Propag. 2015, 63, 2745–2750. [Google Scholar] [CrossRef]
- Maddio, S. A Circularly Polarized Switched Beam Antenna with Pattern Diversity for WiFi Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 125–128. [Google Scholar] [CrossRef]
- Cidronali, A.; Maddio, S.; Giorgetti, G.; Manes, G. Analysis and Performance of a Smart Antenna for 2.45-GHz Single-Anchor Indoor Positioning. IEEE Trans. Microw. Theory Tech. 2009, 58, 21–31. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Trappe, W.; Martin, R.P. Impact of anchor placement and anchor selection on localization accuracy. In Handbook of Position Location: Theory, Practice, and Advances; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 425–455. [Google Scholar]
- Razavi, A.; Valkama, M.; Simona, L.E. Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization. Sensors 2016, 16, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddio, S.; Passafiume, M.; Cidronali, A.; Manes, G. A scalable distributed positioning system augmenting WiFi technology. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2013, Montbéliard, France, 8–31 October 2013. [Google Scholar]
- Maddio, S.; Cidronali, A.; Passafiume, M.; Collodi, G.; Lucarelli, M.; Maurri, S. Multipath Robust Azimuthal Direction of Arrival Estimation in Dual-Band 2.45–5.2 GHz Networks. IEEE Trans. Microw. Theory Tech. 2017, 65, 4438–4449. [Google Scholar] [CrossRef]
- Wu, K.; Xiao, J.; Yi, Y.; Chen, D.; Luo, X.; Ni, L.M. CSI-Based Indoor Localization. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 1300–1309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xia, W.; Jia, Z.; Shen, L. The Indoor Localization Method based on the Integration of RSSI and Inertial Sensor. In Proceedings of the Global Conference on Consumer Electronics, Tokyo, Japan, 7–10 October 2014; IEEE: Salt Like City, UT, USA, 2014; pp. 332–336. [Google Scholar]
- Chen, W.; Wang, W.; Li, Q.; Chang, Q.; Hou, H. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI. Sensors 2016, 16, 410. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; O’Brien, W.J.; Julien, C. Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites. Adv. Eng. Inform. 2011, 25, 355–363. [Google Scholar] [CrossRef]
Configuration | Anchor Positions | Mesh Area |
---|---|---|
(A) Large | #1 (1.50, 5.00) m; #2 (1.50, 1.00) m | 17 m2 |
#3 (6.00, 5.00) m; #4 (6.00, 1.00) m | 40% of room area | |
(B) Medium | #1 (2.20, 3.50) m; #2 (2.20, 1.20) m | 7.6 m2 |
#3 (5.50, 3.50) m; #4 (5.50, 1.20) m | 17% of room area | |
(C) Tiny | #1 (2.70, 2.65) m; #2 (2.70, 1.70) m | 1.19 m2 |
#3 (3.90, 2.65) m; #4 (3.90, 1.70) m | 2.6% of room area |
Configuration | A Large | B Medium | C Tiny | |
---|---|---|---|---|
Full Room | Mean Error | 0.71 m | 0.99 m | 3.11 m |
Coverage * | 78.26% | 66.52% | 26.30% | |
Within the Mesh Area | Mean Error | 0.73 m | 0.51 m | 0.13 m |
Coverage * | 73.21% | 93.81% | 100% |
Configuration | A Large | B Medium | C Tiny | |
---|---|---|---|---|
Full Room | Mean Error | 0.70 m | 0.85 m | 1.75 m |
Coverage * | 79.13% | 72.12% | 34.35% | |
Within the Mesh Area | Mean Error | 0.66 m | 0.47 m | 0.32 m |
Coverage * | 82.09% | 96% | 100% |
Ref | N. of Anchor | Technology | Training | Room Size (m2) | Anchor Density (1/m2) | Mean Error (m) |
---|---|---|---|---|---|---|
[31] | 3 | CSI/RSSI | Yes | 40 | 0.075 | 0.60/0.90 |
[32] | 4 | RSSI + IMU | Yes | 150 | 0.027 | 1.80 |
[19] | 15 | RSSI + IMU | Yes | 1609 | 0.009 | 3.42 |
[18] | 6 | RSSI + IMU | Yes | 157 | 0.038 | 1.00 |
[33] | 6 | RSSI + IMU | Yes | 1250 | 0.005 | 1.00 |
[34] | 4 | RSSI | Yes | 45 | 0.089 | 1.22 |
[15] | 4 | SBA + RSSI | Yes | 34.5 | 0.120 | 1.08 |
This Work | 4 | SBA + RSSI | No | 34.5 | 0.120 | 0.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cidronali, A.; Collodi, G.; Lucarelli, M.; Maddio, S.; Passafiume, M.; Pelosi, G. Assessment of Anchors Constellation Features in RSSI-Based Indoor Positioning Systems for Smart Environments. Electronics 2020, 9, 1026. https://doi.org/10.3390/electronics9061026
Cidronali A, Collodi G, Lucarelli M, Maddio S, Passafiume M, Pelosi G. Assessment of Anchors Constellation Features in RSSI-Based Indoor Positioning Systems for Smart Environments. Electronics. 2020; 9(6):1026. https://doi.org/10.3390/electronics9061026
Chicago/Turabian StyleCidronali, Alessandro, Giovanni Collodi, Matteo Lucarelli, Stefano Maddio, Marco Passafiume, and Giuseppe Pelosi. 2020. "Assessment of Anchors Constellation Features in RSSI-Based Indoor Positioning Systems for Smart Environments" Electronics 9, no. 6: 1026. https://doi.org/10.3390/electronics9061026
APA StyleCidronali, A., Collodi, G., Lucarelli, M., Maddio, S., Passafiume, M., & Pelosi, G. (2020). Assessment of Anchors Constellation Features in RSSI-Based Indoor Positioning Systems for Smart Environments. Electronics, 9(6), 1026. https://doi.org/10.3390/electronics9061026