Clinical Prediction of Type 2 Diabetes Mellitus (T2DM) via Anthropometric and Biochemical Variations in Prakriti
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Size
2.2. Design
2.3. Criteria of Subject Selection
2.3.1. Selection of Diabetic Subjects Was Based on the Following Criteria
- (i)
- Fasting blood glucose value 126 mg/dL or higher.
- (ii)
- Post Prandial blood glucose level more than 200 mg/dL.
- (iii)
- No insulin-dependent cases (type 1 diabetes).
2.3.2. Selection of Control Subjects
- (i)
- No family history of type 2 diabetes (because of this, there are genetically fewer chances to have predisposition with the disease).
- (ii)
- Blood glucose level within the normal range, i.e., Fasting and Postprandial. (It shows glucose metabolism and insulin action were proper; hence no hyperglycemia was detected).
- (iii)
- Healthy individuals, not under any medication, were considered. (Biochemical parameters may be affected due to intake of medication).
2.3.3. Exclusion Criteria
- (i)
- Unwilling participants.
- (ii)
- Patients with insulin-dependent DM, tuberculosis, AIDS, and malignancies were excluded.
2.3.4. Limitations
2.4. Parameters Associated with Study
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Limitation
References
- Singh, S.K.; Apata, T.; Singh, S.; McFadden, M.; Singh, R. Clinical Implication of Metformin in Relation to Diabetes Mellitus and Ovarian Cancer. Biomedicines 2021, 9, 1020. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Liang, R.; Zheng, Q.; Yuan, G.; Xin, Z.; Chen, X.; Lai, F.; Liu, Y. Overview of Clinical Trials on Type 2 Diabetes Mellitus: A Comprehensive Analysis of the ClinicalTrials.gov Database. Diabetes Metab. Syndr. Obes. 2021, 14, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.I. Impaired glucose tolerance in the U.S. population. Diabetes Care 1989, 12, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- King, G.L. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol. 2008, 79, 1527–1534. [Google Scholar] [CrossRef]
- Singh, S.; Gehlot, S.; Agrawal, N.K. Basis of Disease Manifestation: A Molecular and Ayurvedic Approach with an Integrated Concept of Ayurgenomics. Inform. J. 2019, 19, 41–55. [Google Scholar] [CrossRef]
- Aggarwal, S.; Negi, S.; Jha, P.; Singh, P.K.; Stobdan, T.; Pasha, M.A.; Ghosh, S.; Agrawal, A.; Prasher, B.; Mukerji, M. EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc. Natl. Acad. Sci. USA 2010, 107, 18961–18966. [Google Scholar] [CrossRef] [Green Version]
- Rizzo-Sierra, C.V. Ayurvedic genomics, constitutional psychology, and endocrinology: The missing connection. J. Altern. Complement. Med. 2011, 17, 465–468. [Google Scholar] [CrossRef]
- Amin, H.; Sharma, R.; Vyas, M.; Vyas, H. Genomic Counterparts to Human Constitution (Prakriti). Indian J. Anc. Med. Yoga 2014, 7, 29–37. [Google Scholar]
- Sharma, H.; Chandola, H.M. Prameha in Ayurveda: Correlation with obesity, metabolic syndrome, and diabetes mellitus. Part 1-etiology, classification, and pathogenesis. J. Altern. Complement. Med. 2011, 17, 491–496. [Google Scholar] [CrossRef]
- Prasher, B.; Negi, S.; Aggarwal, S.; Mandal, A.K.; Sethi, T.P.; Deshmukh, S.R.; Purohit, S.G.; Sengupta, S.; Khanna, S.; Mohammad, F.; et al. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda. J. Transl. Med. 2008, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, H.; Sharma, H. Biochemical and Anthropometric Profiles of Different Prakriti (Ayurvedic Constitution) Patients of Non-insulin Dependent Diabetes Mellitus. J. Obes. Metab. Res. 2015, 2, 120–124. [Google Scholar] [CrossRef]
- Kavita, P.; Sangeeta, G.; Kamlakar, T. Effect of aerobic exercise on anthroprometric and metabolic parameters in Obese type-2 diabetics with reference to specific body constitution (prakriti). Int. J. Res. Ayurveda Pharm. 2012, 3, 659–663. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Gehlot, S. Development, Validation and Confirmation of an Archetype Tool to Evaluate Prakriti. J. Nat. Remedies 2019, 19, 206–213. [Google Scholar] [CrossRef]
- Shilpa, S.; Venkatesha Murthy, C.G. Understanding personality from Ayurvedic perspective for psychological assessment: A case. Ayu 2011, 32, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Liese, A.D.; Mayer-Davis, E.J.; Tyroler, H.A.; Davis, C.E.; Keil, U.; Duncan, B.B.; Heiss, G. Development of the multiple metabolic syndrome in the ARIC cohort: Joint contribution of insulin, BMI, and WHR. Atherosclerosis risk in communities. Ann. Epidemiol. 1997, 7, 407–416. [Google Scholar] [CrossRef]
- Amin, H.; Sharma, R. Biochemical and anthropometric profile of obese subjects of different Prakriti (Constitution) at Jamnagar District, Gujarat, India. Int. J. Clin. Exp. Physiol. 2015, 2, 16–22. [Google Scholar] [CrossRef]
- Bhushan, P.; Kalpana, J.; Arvind, C. Classification of human population based on HLA gene polymorphism and the concept of Prakriti in Ayurveda. J. Altern. Complement. Med. 2005, 11, 349–353. [Google Scholar] [CrossRef]
- Mahalle, N.P.; Kulkarni, M.V.; Pendse, N.M.; Naik, S.S. Association of constitutional type of Ayurveda with cardiovascular risk factors, inflammatory markers and insulin resistance. J. Ayurveda Integr. Med. 2012, 3, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Gudala, K.; Muthyala, H.; Esam, H.P.; Nayakallu, R.; Bhansali, A. Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. J. Diabetes Investig. 2014, 5, 714–721. [Google Scholar] [CrossRef]
- Singh, P.K.; Byadgi, P.S.; Singh, G.; Tripathi, N.S. Impact of season and constitution on lipid parameters. Ayu 2013, 34, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.; Gehlot, S. Variation of bmi as per prakriti in diabetic and hypertensive Individuals by walking. Int. Ayurvedic Med. J. 2015, 3, 1718–1723. [Google Scholar]
- Bhalerao, S.; Deshpande, T.; Thatte, U. Prakriti (Ayurvedic concept of constitution) and variations in platelet aggregation. BMC Complement. Altern. Med. 2012, 12, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, M.; Sharma, U.S. A comparative study of changes in lipid profile in different age groups W.S.R. prakriti. Int. J. Ayurveda Pharma Res. 2013, 1, 31–37. [Google Scholar]
Parameters | Pitta (n = 51) (Mean ± SD) | Kapha (n = 60) (Mean ± SD) | t-Test | p-Value |
---|---|---|---|---|
Height (cm) | 158 ± 7 | 160 ± 10 | 1.1 | 0.26 |
Weight (kg) | 64 ± 11 | 71 ± 10 | 3.5 | 0.001 |
BMI (kg/m2) | 26 ± 4 | 28 ± 4 | 2.8 | 0.006 |
Systolic Blood Pressure (mm of Hg) | 135 ± 16 | 124 ± 6 | 5.1 | <0.001 |
Diastolic Blood Pressure (mm of Hg) | 82 ± 10 | 79 ± 8.7 | 1.5 | 0.14 |
Waist Hip Ratio (cm) | 0.9 ± 0.05 | 0.96 ± 0.05 | 8.2 | <0.001 |
Fasting Blood Sugar (mg/dL) | 142 ± 31 | 183 ± 78 | 3.5 | 0.001 |
Post Prandial Blood Sugar (mg/dL) | 220 ± 64 | 290 ± 112 | 3.9 | <0.001 |
HDL (mg/dL) | 39 ± 7 | 44 ± 8 | 3.1 | 0.002 |
LDL (mg/dL) | 107 ± 43 | 126 ± 38 | 2.5 | 0.01 |
Triglyceride (mg/dL) | 137 ± 60 | 164 ± 69 | 1.9 | 0.05 |
Total Cholesterol (mg/dL) | 167 ± 45 | 189 ± 40 | 2.7 | 0.007 |
SerumCreatinine (mg/dL) | 0.95 ± 0.30 | 0.99 ± 0.31 | 0.7 | 0.48 |
eGFR * (mL/min/1.73 m2) | 83 ± 40 | 77 ± 26 | 0.9 | 0.38 |
HbA1C (%) | 8 ± 1.6 | 8 ± 2 | 1.0 | 0.31 |
Parameters | Pitta Prakriti (n = 51) | Kapha Prakriti (n = 60) | Between Prakriti Comparison Chi Square and p Value |
---|---|---|---|
Diabetes Retinopathy | |||
BDR * | 11(21.6%) | 13 (21.7%) | χ2 = 1.17 |
NPDR ** | 9(9.8%) | 10 (6.6%) | p = 0.558 |
WNL *** | 35 (68.6%) | 37 (61.7%) | |
Diabetes Neuropathy | |||
NO | 15 (29.4%) | 17 (28.3%) | χ2 = 0.0156 |
YES | 36 (70.6%) | 43 (71.70%) | p = 0.901 |
Cardiovascular disease | |||
NO | 45(88.2%) | 51(85.0%) | χ2 = 0.247 |
YES | 6 (11.8%) | 9 (15.0%) | p = 0.619 |
Micro, Macro proteinuria | |||
Macro uria | 6 (11.8%) | 4 (6.7%) | χ2 = 1.52 |
Micro uria | 1 (2.0%) | 3 (5.0%) | p = 0.469 |
Nil | 44 (86.3%) | 53 (88.3%) | |
Family history of diabetes | |||
NO | 28 (54.9%) | 28 (46.7%) | χ2 = 0.748 |
YES | 23 (45.1%) | 32(53.3%) | p = 0.387 |
Family history of cardiovascular disorder | |||
NO | 41 (80.4%) | 45 (75.0%) | χ2 = 0.459 |
YES | 10 (19.6%) | 15 (25.0%) | p = 0.498 |
Parameters | Vata Prakriti (n = 17) Mean ± SD | Pitta Prakriti (n = 55) Mean ± SD | Kapha Prakriti (n = 40) Mean ± SD | F | p-Value | Post hoc Test (<0.05) |
---|---|---|---|---|---|---|
Height (cm) | 157 ± 8 | 163 ± 8 | 165 ± 6 | 8.752 | <0.0001 | Vata vs. Pitta 0.004 Vata vs. Kapha < 0.001 Pitta vs. Kapha 0.480 |
Weight (kg) | 55 ± 10 | 63 ± 10 | 68 ± 10 | 140.00 | <0.0001 | Vata vs. Pitta < 0.001 Vata vs. Kapha < 0.001 Pitta vs. Kapha 1.000 |
BMI (kg/m2) | 22 ± 3 | 24 ± 3 | 25 ± 3 | 9.779 | <0.0001 | Vata vs. Pitta < 0.001 Vata vs. Kapha 0.009 Pitta vs. Kapha 0.300 |
Systolic Blood Pressure (mm of Hg) | 126 ± 4 | 118 ± 4 | 115 ± 4 | 56.003 | <0.0001 | Vata vs. Pitta < 0.001 Vata vs. Kapha < 0.001 Pitta vs. Kapha 0.001 |
Diastolic Blood Pressure (mm of Hg) | 87 ± 3 | 79 ± 4 | 76 ± 4 | 46.361 | <0.0001 | Vata vs. Pitta < 0.001 Vata vs. Kapha < 0.001 Pitta vs. Kapha 0.019 |
Waist Hip Ratio (cm) | 0.9 ± 0.06 | 0.9 ± 0.08 | 0.95 ± 0.09 | 4.943 | 0.009 | Vata vs. Pitta 0.018 Vata vs. Kapha 0.009 Pitta vs. Kapha 1.000 |
Blood Sugar (mg/dL) Fasting | 83 ± 5 | 91 ± 8 | 97 ± 8 | 22.762 | <0.0001 | Vata vs. Pitta 0.001 Vata vs. Kapha < 0.001 Pitta vs. Kapha < 0.001 |
Blood Sugar (mg/dL) Post Prandial | 109 ± 6 | 116 ± 10 | 123 ± 15 | 9.758 | <0.0001 | Vata vs. Pitta 0.072 Vata vs. Kapha < 0.001 Pitta vs. Kapha 0.015 |
HDL (mg/dL) | 39 ± 3 | 41 ± 4 | 44 ± 4 | 10.683 | <0.0001 | Vata vs. Pitta 0.169 Vata vs. Kapha < 0.001 Pitta vs. Kapha 0.003 |
LDL (mg/dL) | 94 ± 22 | 97.78 ± 18.50 | 99 ± 20 | 0.354 | 0.703 | Vata vs. Pitta 0.169 Vata vs. Kapha <0.001 Pitta vs. Kapha 0.003 |
Triglyceride (mg/dL) | 116 ± 9 | 122 ± 12 | 125 ± 14 | 2.573 | 0.081 | Vata vs. Pitta 1.000 Vata vs. Kapha 1.000 Pitta vs. Kapha 1.000 |
Total cholesterol (mg/dL) | 149 ± 24 | 161 ± 17 | 165 ± 18 | 3.861 | 0.024 | Vata vs. Pitta 0.290 Vata vs. Kapha 0.076 Pitta vs. Kapha 1.000 |
Serum creatinine (mg/dL) | 0.73 ± 0.08 | 0.79 ± 0.08 | 0.80 ± 0.07 | 6.224 | 0.003 | Vata vs. Pitta 0.007 Vata vs. Kapha 0.003 Pitta vs. Kapha 1.000 |
eGFR * (mL/min/1.73 m2) | 98 ± 8 | 99 ± 7 | 100 ± 8 | 0.648 | 0.525 | Vata vs. Pitta 1.000 Vata vs. Kapha 0.825 Pitta vs. Kapha 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Agrawal, N.K.; Singh, G.; Gehlot, S.; Singh, S.K.; Singh, R. Clinical Prediction of Type 2 Diabetes Mellitus (T2DM) via Anthropometric and Biochemical Variations in Prakriti. Diseases 2022, 10, 15. https://doi.org/10.3390/diseases10010015
Singh S, Agrawal NK, Singh G, Gehlot S, Singh SK, Singh R. Clinical Prediction of Type 2 Diabetes Mellitus (T2DM) via Anthropometric and Biochemical Variations in Prakriti. Diseases. 2022; 10(1):15. https://doi.org/10.3390/diseases10010015
Chicago/Turabian StyleSingh, Shriti, Neeraj Kumar Agrawal, Girish Singh, Sangeeta Gehlot, Santosh Kumar Singh, and Rajesh Singh. 2022. "Clinical Prediction of Type 2 Diabetes Mellitus (T2DM) via Anthropometric and Biochemical Variations in Prakriti" Diseases 10, no. 1: 15. https://doi.org/10.3390/diseases10010015
APA StyleSingh, S., Agrawal, N. K., Singh, G., Gehlot, S., Singh, S. K., & Singh, R. (2022). Clinical Prediction of Type 2 Diabetes Mellitus (T2DM) via Anthropometric and Biochemical Variations in Prakriti. Diseases, 10(1), 15. https://doi.org/10.3390/diseases10010015