A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases
Abstract
:1. Introduction
2. UCSF MEG System
3. Phase II: Wireless EEG MongoDB & Cassandra Brain Computer Interface Databases and iOS Applications
3.1. EEG Data Acquisition and Signal Processing
Brain-Machine Interfaces
- Pilots and flight control
- Vigilance monitoring for air force, navy, or ground troop vehicles
- Clinical settings: Monitoring patient mental states and providing feedback
- Education: Improving vigilance, attention, learning, and memory
- Monitoring mental processes (“reading the mind”)
- Detecting deception (FBI, CIA, other law enforcement agencies)
- Predicting behavior
- Detecting brain-based predispositions to certain mental tendencies (the brain version of Myers-Briggs)
- Likelihood of improving with one type of training versus another
- Likelihood of performing better under specific circumstances
3.2. EEG Cassandra NoSQL Databases
3.3. Cassandra EEG Databases
Cassandra EEG Databases: KeySpaces and Column-Families
3.4. EEG MongoDB NoSQL Databases
3.5. EEG and MEG BCI Objective and iPhone Integration
3.6. MEG Subject Data BCI iOS Mobile Applications Integration
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- McClay, W.A.; Yadav, N.; Ozbek, Y.; Haas, A.; Attias, H.T.; Nagarajan, S.S. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D-Visualization and the Hadoop Ecosystem. J. Brain Sci. 2015, 5, 419–440. [Google Scholar] [CrossRef] [PubMed]
- Sekihara, K.; Sahani, M.; Nagarajan, S.S. A simple nonparametric statistical thresholding for MEG spatial-filter source reconstruction images. Neuroimage 2005, 27, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MongoDB. Available online: https://www.mongodb.com (accessed on 17 August 2018).
- Cruz-Hernandez, J.M. Systems and Methods for Haptically-Enabled Neural Interfaces. U.S. Patent 20170199569 A1, 24 July 2018. [Google Scholar]
- Yongwook, C. Eye-Brain Interface (EBI) System and Method for Controlling Same. U.S. Patent 2018/0196511 A1, 12 July 2018. [Google Scholar]
- Wijman, T. Mobile Revenues Accountfor More Than 50% of the Global Games Marketas It Reaches $137.9 Billionin 2018. Available online: https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/ (accessed on 17 August 2018).
- Chulis, K. Big Data Analytics for Video, Mobile, and Social Game Monetization: Understand and Influence Profitable Consumer Behavior; IBM Corporation: Armonk, NY, USA, 2012. [Google Scholar]
- Georgopoulos, A.P.; Langheim, F.J.; Leuthold, A.C.; Merkle, A.N. Magnetoencephalographic signals predict movement trajectory in space. Exp. Brain Res. 2005, 167, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Kensuke, S.; Maneesh, S.; Nagarajan, S.S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. Neuroimage 2005, 4, 1056–1067. [Google Scholar]
- Suhail, K. Technical Seminar on “Emotiv Epoc/EEG/BCI”. Available online: http://www.slideshare.net/psycllone/emotiv-epoceegbci (accessed on 29 March 2011).
- Martin, S.; Wolfgang, R.; Martin, B. Adaptive SVM-Based Classification Increases Performance of a MEG-Based Brain-Computer Interface (BCI); Springer: Berlin, Germany, 2012. [Google Scholar]
- Sekihara, K.; Hild, K.; Nagarajan, S.S. Influence of high-rank background interference on adaptive beamformer source reconstruction. In Proceedings of the International Conference for Bioelectromagnetism and Brain Electromagnetic Tomography and Non-invasive Functional Source Imaging, Minneapolis, MN, USA, 12–15 May 2005. [Google Scholar]
- Attias, H. ICA, graphical models, and variational methods. In Independent Component Analysis: Principles and Practice; Roberts, S., Everson, R., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 95–112. [Google Scholar]
- Long, C.J.; Purdon, P.L.; Temereanca, S.; Desal, N.U.; Hamalainen, M.S.; Brown, E.N. State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing. Ann. Appl. Stat. 2011, 5, 1207–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emotiv Systems. Available online: www.emotiv.com (accessed on 17 August 2018).
- Sanei, S.; Chambers, J.A. EEG Signal Processing. In Fundamentals of EEG Signal Processing Centre of Digital Signal Processing; Cardiff University: Cardiff, UK; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography: Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef]
- Apache Cassandra. Available online: http://cassandra.apache.org/ (accessed on 17 August 2018).
- Eben, H. Cassandra: The Definitive Guide; O’Reilly Media: Sevvan, CA, USA, 2011. [Google Scholar]
- Wang, L.; Chen, D.; Ranjan, R.; Khan, S.U.; Kolodziej, J.; Wang, J. Parallel processing of massive EEG Data with MapReduce. In Proceedings of the IEEE 18th International Conference on Parallel and Distributed Systems, Singapore, 17–19 December 2012. [Google Scholar]
- Wang, Y.; Goh, W.; Wong, L.; Montana, G. Random forests on hadoop for genome-wide association studies of multivariate neuroimaging phenotypes. BMC Bioinform. 2013, 14 (Suppl. S16). [Google Scholar] [CrossRef] [PubMed]
- Mellinger, J.; Schalk, G.; Braun, C.; Preissi, H.; Rosenstiel, W.; Birbaumer, N.; Kubler, A. An MEG-based brain-computer interface (BCI). Neuroimage 2007, 36, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Attias, H. Planning by probabilistic inference. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 3–6 January 2003. [Google Scholar]
- Gross, J.; Ioannides, A.A. Linear transformations of data space in MEG. Phys. Med. Biol. 1999, 44, 2081–2097. [Google Scholar] [CrossRef] [PubMed]
- Lal, T.N.; Schröder, M.; Hill, N.J.; Preissl, H.; Hinterberger, T.; Mellinger, J.; Bogdan, M.; Rosenstiel, W.; Hofmann, T.; Birbaumer, N.; et al. A brain computer interface with online feedback based on magnetoencephalography. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 465–472. [Google Scholar]
- Attias, H. A variational bayesian framework for graphical models. Adv. Neural Inform. Process. Syst. 2000, 12, 209–215. [Google Scholar]
- Wolpaw, J.; McFarland, D. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 2004, 101, 17849–17854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millán, J.R.; Rupp, R.; Müller-Putz, G.R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; et al. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 2010, 4, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.T. Big Data Security: The Evolution of Hadoop’s Security Model. Available online: http://www.infoq.com/articles/HadoopSecurityModel/ (accessed on 14 August 2013).
- Rodriguez, M. Big Graph Data on Hortonworks Data Platform. Available online: http://hortonworks.com/blog/big-graph-data-on-hortonworks-data-platform/ (accessed on 13 December 2012).
- Miner, D.; Shook, A. MapReduce Design Patterns; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012. [Google Scholar]
- Yu, H.; Wang, D. Research and implementation of massive health care data management and analysis based on hadoop. In Proceedings of the Fourth International Conference on Computational and Information Science, Chongqing, China, 17–19 August 2012. [Google Scholar]
- The Apache HBase Reference Guide, 2014 Apache Software Foundation. Available online: http://hbase.apache.org/book/client.filter.html (accessed on 31 August 2015).
- Guger Technologies—g.tec Medical Engineering—g.MOBIlab Mobile Laboratories at Sierningstrasse 14, Schiedlberg, Österreich (Austria).g.tec Developed the First Commercially Available BCI System in 1999 and Now Sells This System in More Than 60 Countries Worldwide. Our Products Work with All Major BCI Approaches (Motor Imagery, P300, SSVEP and Slow Cortical Potentials). Available online: http://www.gtec.at/ (accessed on 17 August 2018).
- Nagarajan, S.S.; Attias, H.; Hild, K.; Sekihara, K. A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity. Neuroimage 2006, 30, 400–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, P.; Wang, Y.; Wu, W.; Xu, H.; Gao, X.; Gao, S. Study on an online collaborative BCI to accelerate response to visual targets. In Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 1736–1739. [Google Scholar]
- Wolpaw, J.; Birbaumer, N.; McFarland, D.; Pfurtscheller, G.; Vaughan, T. Brain-computer interfaces for communication and control. Electroencephalogr. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar]
- OpenVibe Datasets Acquisition. Available online: https://www.mindmedia.com/en/products/nexus-32/ (accessed on 17 August 2018).
- Kaelber, D.; Pan, E.C. The value of personal health record (PHR) systems. AMIA Annu. Symp. Proc. 2008, 2008, 343–347. [Google Scholar]
- Climenser, A.; Awni, H.; Irving, C.; Frank, H.; Stefanie, A. User Input Validation and Verification for Augmented and Mixed Reality Experiences. U.S. Patent 2018/0188807 A1, 5 July 2018. [Google Scholar]
- Muller, K.-R.; Anderson, C.; Birch, G. Linear and nonlinear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Attias, H. Independent factor analysis with temporally structured factors. Adv. Neural Inform. Process. Syst. 2000, 12, 386–392. [Google Scholar]
- Garrett, D.; Peterson, D.A.; Anderson, C.W.; Thaut, M.H. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Monsky, P. Generating Functions Attached to Some Infinite Matrices. Electron. J. Comb. 2011, 18, 1–12. [Google Scholar]
- Attias, H. Learning in high dimensions: Modular mixture models. In Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 4–7 January 2001; pp. 144–148. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McClay, W. A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases. Diseases 2018, 6, 89. https://doi.org/10.3390/diseases6040089
McClay W. A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases. Diseases. 2018; 6(4):89. https://doi.org/10.3390/diseases6040089
Chicago/Turabian StyleMcClay, Wilbert. 2018. "A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases" Diseases 6, no. 4: 89. https://doi.org/10.3390/diseases6040089
APA StyleMcClay, W. (2018). A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL Databases. Diseases, 6(4), 89. https://doi.org/10.3390/diseases6040089