Cystatin C, Vitamin D and Thyroid Function Test Profile in Chronic Kidney Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Ethical Approval
2.2. Demographic Data Collection
2.3. Sample Collection and Preparation
2.4. Serum Assays Used to Determine Analytes
2.5. Statistical Analysis and Predictor Levels of Cystatin C, Vitamin D and Thyroid Status
3. Results
3.1. Demographic Characteristics and Aetiologies of CKD
3.2. Results for Serum Cystatin C
3.3. Results for Thyroid Function Tests
3.4. Results for Vitamin D
4. Discussion
4.1. Findings of Cystatin C
4.2. Findings of Vitamin D
4.3. Findings of Thyroid Function Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaitonde, D.Y.; Cook, D.L.; Rivera, I.M. Chronic Kidney Disease: Detection and Evaluation. Am. Fam. Physician 2017, 96, 776–783. [Google Scholar] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Johnson, C.A.; Levey, A.S.; Coresh, J.; Levin, A.; Lau, J.; Eknoyan, G. Clinical practice guidelines for chronic kidney disease in adults: Part II. Glomerular filtration rate, proteinuria, and other markers. Am. Fam. Physician 2004, 70, 1091–1097. [Google Scholar] [PubMed]
- Maul-Abed, W.A.; Al Rasadi, K.; Al-Riyami, D. Estimated glomerular filtration rate (eGFR): A serum creatinine-based test for the detection of chronic kidney disease and its impact on clinical practice. Oman Med. J. 2012, 27, 108–113. [Google Scholar] [CrossRef]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Levey, A.S. Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol. 2009, 20, 2305–2313. [Google Scholar] [CrossRef] [Green Version]
- Shlipak, M.G.; Praught, M.L.; Sarnak, M.J. Update on cystatin C: New insights into the importance of mild kidney dysfunction. Curr. Opin. Nephrol. Hypertens 2006, 15, 270–275. [Google Scholar] [CrossRef]
- Séronie-Vivien, S.; Delanaye, P.; Piéroni, L.; Mariat, C.; Froissart, M.; Cristol, J.P. Cystatin C: Current position and future prospects. Clin. Chem. Lab. Med. 2008, 46, 1664–1686. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Liu, C.; Ye, Y.; Li, H.; Chen, Y.; Fu, Y.; Liu, Z.; Huang, X.; Zhang, Y.; Liao, X.; et al. The diagnostic value of serum creatinine and cystatin c in evaluating glomerular filtration rate in patients with chronic kidney disease: A systematic literature review and meta-analysis. Oncotarget 2017, 8, 72985–72999. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.S.N.; Abayambigai, J.; Sruti, E.; Sowmiya, K. Early prediction of nephropathy and cardiovascular diseases in Indian patients with type 2 diabetes mellitus. Int. J. Med. Sci. Public Health 2014, 3, 1523–1527. [Google Scholar] [CrossRef] [Green Version]
- Fricker, M.; Wiesli, P.; Brandle, M.; Schwegler, B.; Schmid, C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003, 63, 1944–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesli, P.; Schwegler, B.; Spinas, G.A.; Schmid, C. Serum cystatin C is sensitive to small changes in thyroid function. Clin. Chim. Acta 2003, 338, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M. The interaction between thyroid and kidney disease: An overview of the evidence. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Rajput, J.; Shrivastava, M.; Chandra, R.; Gupta, M.; Sharma, R. Correlation of thyroid hormone profile with biochemical markers of renal function in patients with undialyzed chronic kidney disease. Indian J. Endocrinol. Metab. 2018, 22, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Aryee, N.A.; Tagoe, E.A.; Anomah, V.; Arko-Boham, B.; Adjei, D.N. Thyroid hormone status in Ghanaian patients with chronic kidney disease. Pan Afr. Med. J. 2018, 29, 137. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, P.; Singh, A.P.; Bendwal, S. Correlation between severity of chronic kidney disease and thyroid dysfunction. J. Indian Med. Assoc. 2013, 111, 514–516. [Google Scholar]
- Kayima, J.K.; Otieno, L.S.; Gitau, W.; Mwai, S. Thyroid hormone profiles in patients with chronic renal failure on conservative management and regular haemodialysis. East Afr. Med. J. 1992, 69, 333–336. [Google Scholar]
- Mehta, H.J.; Joseph, L.J.; Desai, K.B.; Mehta, M.N.; Samuel, A.M.; Almeida, A.F.; Acharya, V.N. Study to evaluate total and free thyroid hormone levels in chronic renal failure. J. Postgrad. Med. 1991, 37, 79–83. [Google Scholar]
- Song, S.H.; Kwak, I.S.; Lee, D.W.; Kang, Y.H.; Seong, E.Y.; Park, J.S. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol Dial. Transplant. 2009, 24, 1534–1538. [Google Scholar] [CrossRef] [Green Version]
- Haria, J.; Lunia, M. Sick euthyroid syndrome in chronic kidney disease. J. Evol. Med. Dent. Sci. 2013, 2, 8267–8273. [Google Scholar] [CrossRef]
- Berg, J.P.; Liane, K.M.; Bjorhovde, S.B.; Bjoro, T.; Torjesen, P.A.; Haug, E. Vitamin D receptor binding and biological effects of cholecalciferol analogues in rat thyroid cells. J. Steroid Biochem. Mol. Biol. 1994, 50, 145–150. [Google Scholar] [CrossRef]
- Sirajudeen, S.; Shah, I.; Al Menhali, A. A narrative role of vitamin D and its receptor: With current evidence on the gastric tissues. Int. J. Mol. Sci. 2019, 20, 3832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franca Gois, P.H.; Wolley, M.; Ranganathan, D.; Seguro, A.C. Vitamin D Deficiency in Chronic Kidney Disease: Recent Evidence and Controversies. Int. J. Environ. Res. Public Health 2018, 15, 1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erben, R.G. Physiological actions of fibroblast growth factor-23. Front Endocrinol. 2018, 9, 267. [Google Scholar] [CrossRef]
- Ishimura, E.; Nishizawa, Y.; Inaba, M.; Matsumoto, N.; Emoto, M.; Kawagishi, T.; Shoji, S.; Okuno, S.; Kim, M.; Miki, T.; et al. Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in non-dialyzed patients with chronic renal failure. Kidney Int. 1999, 55, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Satirapoj, B.; Limwannata, P.; Chaiprasert, A.; Supasyndh, O.; Choovichian, P. Vitamin D insufficiency and deficiency with stages of chronic kidney disease in an Asian population. BMC Nephrol. 2013, 14, 206. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C. Vitamin D in chronic kidney disease. Contrib. Nephrol. 2013, 180, 98–109. [Google Scholar]
- Dall’Agnol, A.; Brondani, L.A.; Cancelier, V.D.A.; Camargo, E.G.; Silveiro, S.P. Lower serum 25-hydroxyvitamin D levels are associated with impaired glomerular filtration rate in type 2 diabetes patients. Ther. Adv. Endocrinol. Metab. 2020, 11. [Google Scholar] [CrossRef]
- Delanghe, J.; Speeckaert, M. Creatinine determination according to Jaffe—What does it stand for? NDT Plus 2011, 4, 83–86. [Google Scholar] [CrossRef]
- Hansson, L.O.; Grubb, A.; Lidén, A.; Flodin, M.; Berggren, A.; Delanghe, J.; Stove, V.; Luthe, H.; Rhode, K.H.; Beck, C.; et al. Performance evaluation of a turbidimetric cystatin C assay on different high-throughput platforms. Scand. J. Clin. Lab. Investig. 2010, 7, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Doumas, B.T.; Watson, W.A.; Biggs, H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta 1971, 31, 87–96. [Google Scholar] [CrossRef]
- Bourguignon, C.; Dupuy, A.M.; Coste, T.; Michel, F.; Cristol, J.P. Evaluation of NM-BAPTA method for plasma total calcium measurement on Cobas 8000®. Clin. Biochem. 2014, 47, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, X.; Lu, W.; Liao, H.; Liao, P.F. Uricase based methods for determination of uric acid in serum. Microchim. Acta 2009, 164, 1–6. [Google Scholar] [CrossRef]
- Kazerouni, F.; Amirrasouli, H. Performance characteristics of three automated immunoassays for thyroid hormones. Casp. J. Intern. Med. 2012, 3, 400. [Google Scholar]
- Spencer, C.A. Assay of thyroid hormones and related substances. Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Abdel-Wareth, L.; Haq, A.; Turner, A.; Khan, S.; Salem, A.; Mustafa, F.; Hussein, N.; Pallinalakam, F.; Grundy, L.; Patras, G.; et al. Total vitamin D assay comparison of the Roche Diagnostics “Vitamin D total” electrochemiluminescence protein binding assay with the Chromsystems HPLC method in a population with both D2 and D3 forms of vitamin D. Nutrients 2013, 5, 971–980. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. 2002, 40, 221–226. [Google Scholar] [CrossRef]
- Roos, J.f.; Doust, J.; Tett, S.E.; Kirkpatrick, C.M.J. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—A meta-analysis. Clin. Biochem. 2007, 40, 383–391. [Google Scholar] [CrossRef]
- Tan, G.D.; Lewis, A.V.; James, T.J.; Altmann, P.; Taylor, R.P.; Levy, J.C. Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: Reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care 2002, 25, 2004–2009. [Google Scholar] [CrossRef] [Green Version]
- Buysschaert, M.; Joudi, I.; Wallemacq, P.; Hermans, M.P. Performance of serum cystatin-C versus serum creatinine in subjects with type 1 diabetes. Diabetes Care 2003, 26, 1320. [Google Scholar] [CrossRef] [Green Version]
- Pucci, L.; Triscornia, S.; Lucchesi, D.; Fotino, C.; Pellegrini, G.; Pardini, E.; Miccoli, R.; Del Prato, S.; Penno, G. Cystatin C and estimates of renal function: Searching for a better measure of kidney function in diabetic patients. Clin. Chem. 2007, 53, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensson, A.G.; Grubb, A.O.; Nilsson, J.A.; Norrgren, K.; Sterner, G.; Sundkvist, G. Serum cystatin C advantageous compared with serum creatinine in the detection of mild but not severe diabetic nephropathy. J. Intern. Med. 2004, 256, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Hojs, R.; Bevc, S.; Ekart, R.; Gorenjak, M.; Puklavec, L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrol. Dial. Transplant. 2006, 21, 1855–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Shlipak, M.G.; Wang, X.; Coresh, J.; Greene, T.; Stevens, L.; Kusek, J.W.; Beck, G.J.; Collins, A.J.; Levey, A.S.; et al. Cystatin C as a risk factor for outcomes in chronic kidney disease. Ann. Intern. Med. 2007, 147, 19–27. [Google Scholar] [CrossRef]
- Krolewski, A.S.; Warram, J.H.; Forsblom, C.; Smiles, A.M.; Thorn, L.; Skupien, J.; Harjutsalo, V.; Stanton, R.; Eckfeldt, J.H.; Inker, L.A.; et al. Serum concentration of cystatin C and risk of end-stage renal disease in diabetes. Diabetes Care 2012, 35, 2311–2316. [Google Scholar] [CrossRef] [Green Version]
- Pavkov, M.E.; Knowler, W.C.; Hanson, R.L.; Williams, D.E.; Lemley, K.V.; Myers, B.D.; Nelson, R.G. Comparison of serum cystatin C, serum creatinine, measured GFR, and estimated GFR to assess the risk of kidney failure in American Indians with diabetic nephropathy. Am. J. Kidney Dis. 2013, 62, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Mojiminiyi, O.A.; Abdella, N.; George, S. Evaluation of serum cystatin C and chromogranin A as markers of nephropathy in patients with Type 2 diabetes mellitus. Scand. J. Clin. Investig. 2000, 60, 483–489. [Google Scholar] [CrossRef]
- Mojiminiyi, O.A.; Abdella, N. Evaluation of cystatin C and β-2 microglobulin as markers of renal function in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 2003, 17, 160–168. [Google Scholar] [CrossRef]
- Levin, A.; Bakris, G.L.; Molitchm, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 2007, 71, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Norris, K.C.; Olabisi, O.; Barnett, M.E.; Meng, Y.X.; Martins, D.; Obialo, C.; Lee, J.E.; Nicholas, S.B. The Role of Vitamin D and Oxidative Stress in Chronic Kidney Disease. Int. J. Environ. Res. Public Health 2018, 15, 2701. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Lv, J.; Huang, F.T.; Liang, P.F.; Fu, S.; Zeng, Y.C.; Tang, Y.; Xu, A.P. Predictors of Vitamin D deficiency in pre-dialysis patients with stage 3-5 chronic kidney diseases in Southern China. Niger. J. Clin. Pract. 2017, 20, 1309–1315. [Google Scholar] [PubMed]
- Dusso, A.S.; Tokumoto, M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: A downward spiral in kidney disease. Kidney Int. 2011, 79, 715–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imanishi, Y.; Inaba, M.; Nakatsuka, K.; Nagasue, K.; Okuno, S.; Yoshihara, A.; Miura, M.; Miyauchi, A.; Kobayashi, K.; Miki, T.; et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int. 2004, 65, 1943–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Binkley, N.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, R.P. Toward a physiological referent for the vitamin D requirement. J. Endocrinol. Investig. 2014, 37, 1127–1130. [Google Scholar] [CrossRef]
- Eknoyan, G.; Levin, A.; Levin, N.W. Bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, S1–S201. [Google Scholar] [CrossRef]
- Gonzalez, E.A.; Sachdeva, A.; Oliver, D.A.; Martin, K.J. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. Am. J. Nephrol. 2004, 24, 503–510. [Google Scholar] [CrossRef]
- Del Valle, E.; Negri, A.L.; Aguirre, C.; Fradinger, E.; Zanchetta, J.R. Prevalence of 25(OH) vitamin D insufficiency and deficiency in chronic kidney disease stage 5 patients on hemodialysis. Hemodial. Int. 2007, 11, 315–321. [Google Scholar] [CrossRef]
- Bhan, I.; Burnett-Bowie, S.A.M.; Ye, J.; Tonelli, M.; Thadhani, R. Clinical measures identify vitamin D deficiency in dialysis. Clin. J. Am. Soc. Nephrol. 2010, 5, 460–467. [Google Scholar] [CrossRef] [Green Version]
- LaClair, R.E.; Hellman, R.N.; Karp, S.L.; Kraus, M.; Ofner, S.; Li, Q.; Graves, K.L.; Moe, S.M. Prevalence of calcidiol deficiency in CKD: A cross-sectional study across latitudes in the United States. Am. J. Kidney Dis. 2005, 45, 1026–1033. [Google Scholar] [CrossRef]
- Rozita, M.; Afidza, M.N.; Ruslinda, M.; Cader, R.; Halim, A.G.; Kong, C.T.; Nor Azmi, K.; Shah, S.A. Serum Vitamin D levels in patients with chronic kidney disease. EXCLI J. 2013, 12, 511–520. [Google Scholar] [PubMed]
- Caravaca-Fontán, F.; Gonzales-Candia, B.; Luna, E.; Caravaca, F. Relative importance of the determinants of serum levels of 25-hydroxy vitamin D in patients with chronic kidney disease. Nefrologia 2016, 36, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, C.M.; Ahmadi, S.F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low-protein diet for conservative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials. J. Cachexia Sarcopenia Muscle 2017, 9, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Nigwekar, S.U.; Bhan, I.; Thadhani, R. Ergocalciferol and cholecalciferol in CKD. Am. J. Kidney Dis. 2012, 60, 139–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abaza, N.M.; El-Mallah, R.M.; Shaaban, A.; Mobasher, S.A.; Al-Hassanein, K.F.; Zaher, A.A.A.; El-Kabarity, R.H. Vitamin D deficiency in Egyptian systemic lupus erythematosus patients: How prevalent and does it impact disease activity? Integr. Med. Insights 2016, 26, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Raya, A.; Abou-Raya, S.; Helmii, M. The effect of vitamin D supplementation on inflammatory and hemostatic markers and disease activity in patients with systemic lupus erythematosus: A randomized placebo-controlled trial. J. Rheumatol. 2013, 40, 265–272. [Google Scholar] [CrossRef]
- Elsaid, T.O.; Nabih, B.A.; Shabana, A.A.; Elewa, A.M. Serum vitamin D in Egyptian patients with systemic lupus erythematous and its association with lupus nephritis. Int. J. Clin. Rheumatol. 2018, 13, 270–277. [Google Scholar]
- Ruiz-Irastorza, G.; Egurbide, M.V.; Olivares, N.; Martinez-Berriotxoa, A.; Aguirre, C. Vitamin D deficiency in systemic lupus erythematosus: Prevalence, predictors and clinical consequences. Rheumatology 2008, 47, 920–923. [Google Scholar] [CrossRef] [Green Version]
- Kamen, D.L.; Cooper, G.S.; Bouali, H.; Shaftman, S.R.; Hollis, B.W.; Gilkeson, G.S. Vitamin D deficiency in systemic lupus erythematosus. Autoimmun. Rev. 2006, 5, 114–117. [Google Scholar] [CrossRef]
- Wahl, P.; Xie, H.; Scialla, J.; Anderson, C.A.; Bellovich, K.; Brecklin, C.; Chen, J.; Feldman, H.; Gutierrez, O.M.; Lash, J.; et al. Chronic Renal Insufficiency Cohort Study Group. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care 2012, 35, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Li, L.J. Serum 25-hydroxyvitamin D level and diabetic nephropathy in patients with type 2 diabetes mellitus. Int. Urol. Nephrol. 2015, 47, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Sipahi, S.; Acikgoz, S.B.; Genc, A.B.; Yildirim, M.; Solak, Y.; Tamer, A. The association of vitamin d status and vitamin D replacement therapy with glycemic control, serum uric acid levels, and microalbuminuria in patients with type 2 diabetes and chronic kidney disease. Med. Princ. Pract. 2017, 26, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Kajbaf, F.; Mentaverri, R.; Diouf, M.; Fournier, A.; Kamel, S.; Lalau, J.D. The association between 25-hydroxyvitamin D and hemoglobin A1 c levels in patients with type 2 diabetes and stage 1–5 chronic kidney disease. Int. J. Endocrinol. 2014, 2014, 142468. [Google Scholar] [CrossRef] [PubMed]
- Yaturu, S.; Youngberg, B.; Zdunek, S. Vitamin D levels in subjects with or without chronic kidney disease among Veterans with diabetes in North East United States. World J. Diabetes 2017, 8, 346–350. [Google Scholar] [CrossRef]
- Chonchol, M.; Lippi, G.; Salvagno, G.; Zoppini, G.; Muggeo, M.; Targher, G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1296–1300. [Google Scholar] [CrossRef] [Green Version]
- Asvold, B.O.; Bjøro, T.; Vatten, L.J. Association of thyroid function with estimated glomerular filtration rate in a population-based study: The HUNT study. Eur. J. Endocrinol. 2011, 164, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Khatiwada, S.; Rajendra, K.C.; Gautam, S.; Lamsal, M.; Baral, N. Thyroid dysfunction and dyslipidemia in chronic kidney disease patients. BMC Endocr. Disord. 2015, 15, 65. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.A.; Bobby, Z.; Selvaraj, N.; Vinayagamoorthi, R. An evaluation of thyroid hormone status and oxidative stress in undialyzed chronic renal failure patients. Indian J. Physiol. Pharmacol. 2006, 50, 279–284. [Google Scholar]
- Rajeev, G.; Rayappa, W.D.S.C.; Vijayalakshmi, R.; Swathi, M.; Kumar, S. Evaluation of thyroid hormone levels in chronic kidney disease patients. Saudi J. Kidney Dis. Transpl. 2015, 26, 90–93. [Google Scholar]
- Rajagopalan, B.; Dolia, P.B.; Arumalla, V.K. Renal function markers and thyroid hormone status in undialyzed chronic kidney disease. Al Ameen J. Med. Sci. 2013, 6, 70–74. [Google Scholar]
- Lo, J.C.; Chertow, G.M.; Go, A.S.; Hsu, C.Y. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005, 67, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, S.; Purwar, N.; Gupta, A.; Gupta, P.; Srivastava, A. Prevalence of hypothyroidism in nondiabetic chronic kidney disease and effect of thyroxine replacement on estimated glomerular filtration rate. Indian J. Nephrol. 2017, 27, 104–107. [Google Scholar] [PubMed]
- Ng, Y.; Wu, S.C.; Da Lin, H.; Hu, F.H.; Hou, C.C.; Chou, Y.Y.; Chiu, S.M.; Sun, Y.H.; Cho, S.S.-Y.; Yang, W.C. Prevalence of clinical and subclinical thyroid disease in a peritoneal dialysis population. Perit. Dial. Int. 2012, 32, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, A.B.; Pellizzari, C.; Carvalho, G.A.; Sant’Anna, B.C.; Montenegro, R.L.; Zammar, F.R.G.; Mesa Junior, C.O.; Hauck Prante, P.R.; Olandoski, M.; Carvalho, M. High prevalence of subclinical hypothyroidism and nodular thyroid disease in patients on hemodialysis. Hemodial. Int. 2016, 20, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kaptein, E.M. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr. Rev. 1996, 17, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Wiederkehr, M.R.; Kalogiros, J.; Krapf, R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol. Dial. Transpl. 2004, 19, 1190–1197. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Rhee, C.M.; Leung, A.M.; Braverman, L.E.; Brent, G.A.; Pearce, E.N. A review: Radiographic iodinated contrast media-induced thyroid dysfunction. J. Clin. Endocr. Metab. 2015, 100, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Bando, Y.; Ushiogi, Y.; Okafuji, K.; Toya, D.; Tanaka, N.; Miura, S. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction. Exp. Clin. Endocrinol. Diabetes 2002, 110, 408–4015. [Google Scholar] [CrossRef]
- Jia, F.; Tian, J.; Deng, F.; Yang, G.; Long, M.; Cheng, W.; Wang, B.; Wu, J.; Liu, D. Subclinical hypothyroidism and the associations with macrovascular complications and chronic kidney disease in patients with Type 2 diabetes. Diabetes Med. 2015, 32, 1097–1103. [Google Scholar] [CrossRef]
- Rodondi, N.; de Elzen, W.P.J.; Bauer, D.C.; Cappola, A.R.; Razvi, S.; Walsh, J.P.; Åsvold, B.O.; Iervasi, G.; Imaizumi, M.; Collet, T.-H.; et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 2010, 304, 1365–1374. [Google Scholar] [CrossRef]
- Ashizawa, K.; Imaizumi, M.; Usa, T.; Tominaga, T.; Sera, N.; Hida, A.; Ejima, E.; Neriishi, K.; Soda, M.; Ichimaru, S.; et al. Metabolic cardiovascular disease risk factors and their clustering in subclinical hypothyroidism. Clin. Endocrinol. 2010, 72, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Cotoi, L.; Borcan, F.; Sporea, I.; Amzar, D.; Schiller, O.; Schiller, A.; Dehelean, C.A.; Pop, G.N.; Borlea, A.; Stoian, D. Thyroid pathology in end-stage renal disease patients on hemodialysis. Diagnostics 2020, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Lugg, S.T.; Howells, P.A.; Thickett, D.R. Optimal vitamin D supplementation levels for cardiovascular disease protection. Dis. Markers 2015, 2015, 864370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Males | Females | p | |||
---|---|---|---|---|---|
Number | 65 | −46.40% | 75 | −53.60% | |
Age range (years) | 18 | −94 | 18 | –98 | |
Age (years) | 61.11 ± 17.39 | 55.61 ± 17.98 | 0.07 | ||
Age Groups | |||||
<29 | 5 (7.7%) | 5 (6.7%) | |||
30–39 | 0 (0%) | 9 (12.0%) | |||
40–49 | 11 | −16.90% | 15 | −20.00% | |
50–59 | 13 | −20.00% | 15 | −20.00% | |
60–69 | 14 | −21.50% | 14 | −18.70% | |
70+ | 22 | −33.80% | 17 | −22.70% | |
Weight range (kg) | 42 | –147.9 | 41.2–111.6 | ||
Weight (kg) | 76.21 | 70.3 | ±16.83 | 0.09 | |
Height range (cm) | 141 | 142.2 | –180.3 | ||
Height (cm) | 172.23 ± 15.47 | 162.10 ± 7.85 | <0.05 | ||
Body surface area (BSA) (m2) | 1.87 | ±0.27 | 1.76 ± 0.21 | <0.05 | |
Serum creatinine (μmol/L) | 240.86 ± 248.67 | 233.23 ± 247.71 | 0.48 | ||
Creatinine clearance (mL/min) | 60.42 | 58.47 | ±59.34 | 0.84 | |
Albumin (g/L) | 41.48 | 40.04 | ±4.25 | 0.07 | |
Calcium (mmol/L) | 2.29 | ±0.20 | 2.30 ± 0.16 | 0.78 | |
Vitamin D levels (ng/mL) | 33.37 | 35 | ±15.33 | 0.54 | |
Free Thyroxine (FT4) (ng/mL) | 1.18 | ±0.27 | 1.07 ± 0.27 | <0.05 | |
TSH (mU/L) | 2.25 | ±2.37 | 2.12 ± 1.53 | 0.68 | |
Cystatin C (mg/L) | 2.28 | ±1.20 | 2.36 ± 1.44 | 0.74 | |
Urea (mmol/L) | 12.03 | 10.88 | ±7.62 | 0.4 |
Cystatin C (mg/L) | |||||
---|---|---|---|---|---|
0.61–0.95 | >0.95 | p | |||
Study population (n) | 11 | 129 | - | ||
Age (years) | 36.55 | ±17.12 | 60.01 | ±16.73 | <0.05 |
Creatinine (μmol/L) | 51.91 | ±21.55 | 252.53 | ±251.36 | <0.05 |
CrCl (mL/min) | 189.00 ± 81.11 | 48.32 | ±37.71 | <0.05 | |
TSH (mU/L) | 2.19 | ±1.40 | 2.19 | ±2.00 | 0.99 |
FT4 (ng/mL) | 1.08 | ±0.23 | 1.12 | ±0.28 | 0.60 |
TSH (mU/L) | 2.19 ± 1.40 | 2.19 | ±1.20 | 0.99 | |
Albumin (g/L) | 41.00 ± 4.45 | 40.68 ± 4.69 | 0.83 | ||
Urine Protein (g/day) | 0.37 | ±0.48 | 0.57 | ±0.80 | 0.41 |
Characteristics | Stage I | Stage II | Stage III | Stage IV | Stage V | p | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. of Subjects | 26 | 27 | 41 | 24 | 22 | - | |||||
Age | 44.15 | ±16.05 | 53.56 | ±13.10 | 60.59 | ±17.18 | 70.67 | ±14.84 | 62.23 | ±17.64 | <0.05 |
BSA | 1.87 | ±0.27 | 1.85 | ±0.21 | 1.79 | ±0.25 | 1.74 | ±0.27 | 1.80 | ±0.22 | 0.52 |
Creatinine (μmol/L) | 76.54 | ±34.96 | 102.85 ± 39.57 | 170.10 ± 69.76 | 247.21 ± 78.46 | 703.36 | ±306.00 | <0.05 | |||
Urea (mmol/L) | 4.17 | ±1.74 | 6.38 | ±2.59 | 10.78 ± 5.53 | 15.4 | ±6.36 | 22.98 ± 7.89 | <0.05 | ||
Albumin (g/L) | 40.69 ± 5.73 | 41.00 ± 3.46 | 41.20 ± 5.04 | 39.75 ± 4.71 | 40.50 ± 3.89 | 0.32 | |||||
Potassium (mmol/L) | 4.28 | ±0.47 | 4.38 | ±0.73 | 4.75 | ±0.64 | 4.77 | ±0.66 | 5.10 | ±1.63 | <0.05 |
Calcium (mmol/L) | 2.31 | ±0.13 | 2.35 | ±0.12 | 2.34 | ±0.22 | 2.28 | ±0.16 | 2.16 | ±0.19 | <0.05 |
Phosphorus (mmol/L) | 1.05 | ±0.20 | 1.04 | ±0.19 | 1.10 | ±0.24 | 1.12 ± 0.21 | 1.41 | ±0.25 | <0.05 | |
Uric Acid (mmol/L) | 0.50 | ±0.72 | 0.39 | ±0.11 | 0.41 | ±0.12 | 0.45 | ±0.13 | 0.41 | ±0.13 | 0.79 |
24-h Protein (g/day) | 0.46 | ±0.55 | 0.42 ± 0.911 | 0.62 | ±0.95 | 0.60 | ±0.67 | 0.68 | ±0.63 | 0.72 | |
24-h Urea (mmol/day) | 292.12 ± 95.14 | 217.11 ± 100.11 | 225.38 ± 93.99 | 179.04 ± 59.57 | 128.68 ± 68.67 | <0.05 | |||||
FT4 (ng/mL) | 1.15 | ±0.21 | 1.14 | ±0.33 | 1.17 | ±0.32 | 1.07 | ±0.23 | 1.03 | ±0.20 | 0.38 |
TSH (mIU/mL) | 1.71 | ±1.00 | 1.94 | ±1.47 | 2.60 | ±2.92 | 2.00 | ±0.99 | 2.48 | ±1.82 | 0.45 |
Vitamin D (ng/mL) | 33.42 | ±15.18 | 37.26 | ±16.49 | 36.00 | ±16.24 | 34.92 | ±15.44 | 27.50 | ±12.04 | 0.23 |
Cystatin C (mg/L) | 1.11 | ±0.31 | 1.52 | ±0.33 | 2.26 | ±0.82 | 2.71 ± 0.82 | 4.46 | ±1.34 | <0.05 |
Diabetes Mellitus | Non-Diabetic | p | |||
---|---|---|---|---|---|
Study population | 43 | 97 | - | ||
Age (years) | 66.00 | ±14.18 | 54.69 | ±18.28 | <0.05 |
Albumin (g/L) | 40.23 ± 4.09 | 40.92 ± 4.89 | 0.42 | ||
Creatinine (μmol/L) | 320.42 | ±273.46 | 199.69 | ±226.50 | <0.05 |
CrCl (mL/min) | 34.12 | ±30.91 | 70.57 | ±61.97 | <0.05 |
Cystatin C (mg/L) | 2.80 | ±1.28 | 2.11 | ±1.30 | <0.05 |
Urine Protein (g/day) | 0.79 | ±0.96 | 0.45 | ±0.67 | <0.05 |
FT4 (ng/mL) | 1.10 | ±0.17 | 1.13 | ±0.31 | 0.60 |
TSH (mU/mL) | 2.28 | ±1.40 | 2.14 | ±2.16 | 0.69 |
Vitamin D (ng/mL) | 30.16 | ±14.84 | 36.05 | ±15.49 | <0.05 |
Calcium (mmol/L) | 2.28 | ±0.23 | 2.31 | ±0.16 | 0.37 |
Phosphorus (mmol/L) | 1.20 | ±0.29 | 1.10 | ±0.23 | <0.05 |
Vitamin D (ng/mL) | |||||
---|---|---|---|---|---|
<30 | ≥30 | p | |||
Study population | 62 | 78 | - | ||
Age | 56.35 | ±19.14 | 59.60 | ±16.76 | <0.05 |
Albumin (g/L) | 38.82 ± 5.17 | 42.21 ± 3.58 | <0.05 | ||
Calcium (mmol/L) | 2.25 | ±0.20 | 2.34 | ±0.16 | <0.05 |
Phosphorus (mmol/L) | 1.18 | ±0.25 | 1.09 | ±0.24 | <0.05 |
Urine Protein (g/day) | 0.81 | ±0.94 | 0.36 | ±0.56 | <0.05 |
Creatinine (μmol/L) | 307.03 | ±292.89 | 203.42 | ±188.34 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapper, M.; McGrowder, D.A.; Dilworth, L.; Soyibo, A. Cystatin C, Vitamin D and Thyroid Function Test Profile in Chronic Kidney Disease Patients. Diseases 2021, 9, 5. https://doi.org/10.3390/diseases9010005
Tapper M, McGrowder DA, Dilworth L, Soyibo A. Cystatin C, Vitamin D and Thyroid Function Test Profile in Chronic Kidney Disease Patients. Diseases. 2021; 9(1):5. https://doi.org/10.3390/diseases9010005
Chicago/Turabian StyleTapper, Marlene, Donovan A. McGrowder, Lowell Dilworth, and Adedamola Soyibo. 2021. "Cystatin C, Vitamin D and Thyroid Function Test Profile in Chronic Kidney Disease Patients" Diseases 9, no. 1: 5. https://doi.org/10.3390/diseases9010005
APA StyleTapper, M., McGrowder, D. A., Dilworth, L., & Soyibo, A. (2021). Cystatin C, Vitamin D and Thyroid Function Test Profile in Chronic Kidney Disease Patients. Diseases, 9(1), 5. https://doi.org/10.3390/diseases9010005