Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland
Abstract
:1. Introduction
2. Literature Review
- full traceability of the partial products and final product,
- the usage of Cyber Physical Production Systems within the plant,
- intensive communication and network of all plants inside the company,
- intelligent production systems are given the opportunity to have knowledge about their own quality and their production history,
- suitable handling and usage of the data,
- intensive communication systems along the whole supply chain,
- decentralization instead of the usage of central solutions.
3. Methodology
4. Results of the SM Projects in Steel Enterprises Based on Empirical Research
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0. Working Group: Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution, VDI-Nachrichten; Acatech-National Academy of Science and Engineering: München, Germany, 2013; Available online: http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf (accessed on 15 January 2022).
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. A Literature Review. Working Paper No. 01. Technische Universität Dortmund Fakultät Maschinenbau. 2015. Available online: http://www.iim.mb.tu-dortmund.de/cms/de/forschung/Arbeitsberichte/DesignPrinciples-for-Industrie-4_0-Scenarios.pdf (accessed on 15 January 2022).
- Chiarell, F.; Trivelli, L.; Bonaccorsi, A.; Fanroni, G. Extracting and mapping Industry 4.0 technologies using. Comput. Ind. 2018, 100, 244–257. [Google Scholar] [CrossRef]
- Greengard, S. The Internet of Things; MIT Press: London, UK, 2015. [Google Scholar]
- Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Gajdzik, B.; Grabowska, S.; Saniuk, S. A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules. Energies 2021, 14, 940. [Google Scholar] [CrossRef]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0. The Future of Productivity and Growth in Manufacturing Industries; The Boston Consulting Group: Boston, MA, USA, 2015. [Google Scholar]
- Seebacher, G.; Winkler, H. A citation analysis of the research on manufacturing and supply chain flexibility. Int. J. Prod. Res. 2013, 51, 3415–3427. [Google Scholar] [CrossRef]
- Erro-Garcés, A. Industry 4.0: Defining the research agenda. Benchmarking 2021, 28, 1858–1882. [Google Scholar] [CrossRef]
- Fonseca, L.M. Industry 4.0 and the digital society: Concepts, dimensions and envisioned benefits. In Proceedings of the 12th International Conference on Business Excellence, Bucharest, Romania, 22–23 March 2018; pp. 386–397. [Google Scholar] [CrossRef] [Green Version]
- Bonilla Silvia, H.; Silva Helton, R.O.; da Silva, M.T.; Gonçalves, R.F.; Sacomano, J.B. Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef] [Green Version]
- Essakly, A.; Wicgmann, M.; Spendgler, T.S. A Reference Framework for the Holistic Evaluation of Industry 4.0 Solutions for Small and Medium-Sized Enterprises. IFAC-Pap. 2019, 52, 427–432. [Google Scholar] [CrossRef]
- Müller, J.M.; Buliga, O.; Voigt, K.I. Fortune Favors the Prepared: How SMSs Approach Business Model Innovations in Industry 4.0. Technol. Forecast. Soc. Chang. 2018, 132, 2–17. [Google Scholar] [CrossRef]
- Pavitt, K. The Objectives of Technology Policy. Sci. Public Policy 1987, 14, 182–188. [Google Scholar]
- Diaconu, M. Technological Innovation: Concept, Process, Typology and Implications in the Economy. Theor. Appl. Econ. 2011, 18, 127–144. [Google Scholar]
- Liu, Z.; Shi, Y.; Yang, B.; Yang, B. Open Innovation in Times of Crisis: An Overview of the Healthcare Sector in Response to the COVID-19 Pandemic. J. Open Innov. Technol. Mark. Complex. 2022, 8, 21. [Google Scholar] [CrossRef]
- Venesz, B.; Dőry, T.; Raišienė, A.G. Characteristics of Lead Users in Different Stages of the New Product Development Process: A Systematic Review in the Context of Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 24. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R. Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study. Energies 2021, 14, 3034. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R. Transitioning of Steel Producers to the Steelworks 4.0—Literature Review with Case Studies. Energies 2021, 14, 4109. [Google Scholar] [CrossRef]
- Lugo-Morin, D.R. Innovate or Perish: Food Policy Design in an Indigenous Context in a Post-Pandemic and Climate Adaptation Era. J. Open Innov. Technol. Mark. Complex. 2022, 8, 34. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Chun, D. The Effect of Knowledge Sharing on Ambidextrous Innovation: Triadic Intellectual Capital as a Mediator. J. Open Innov. Technol. Mark. Complex. 2022, 8, 25. [Google Scholar] [CrossRef]
- Churkay, N.; Mrykhina, O.; Izonin, I. Holistic Approach to R&D Products’ Evaluation for Commercialization under Open Innovations. J. Open Innov. Technol. Mark. Complex. 2022, 8, 9. [Google Scholar] [CrossRef]
- Lopes, J.M.; Gomes, S.; Oliveira, J.; Oliveira, M. International Open Innovation Strategies of Firms in European Peripheral Regions. J. Open Innov. Technol. Mark. Complex. 2022, 8, 7. [Google Scholar] [CrossRef]
- Oh, H.J.; Yi, C.G. Development of Innovation Studies in Korea from the Perspective of the National Innovation System. Sustainability 2022, 14, 1752. [Google Scholar] [CrossRef]
- Ma, X.; Ock, Y.S.; Wu, F.; Zhang, Z. The Effect of Internal Control on Green Innovation: Corporate Environmental Investment as a Mediator. Sustainability 2022, 14, 1755. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, R.; Lu, Y. A Visualized Analysis of the Research Current Hotspots and Trends on Innovation Chain Based on the Knowledge Map. Sustainability 2022, 14, 1708. [Google Scholar] [CrossRef]
- Pratapa, P.; Subramoniam, R.; Gaur, J. Role of Standards as an Enabler in a Digital Remanufacturing Industry. Sustainability 2022, 14, 1643. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, X.; Sun, M.; Zhang, B. Exploring the Evolution and Determinants of Open Innovation: A Perspective from Patent Citations. Sustainability 2022, 14, 1618. [Google Scholar] [CrossRef]
- Mei, L.; Shao, W. The effect of firm size on regional innovation efficiency in China. Mod. Econ. 2016, 7, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, J.; Chen, R.; Xi, Y.; Liu, S.Q.; Wu, F.; Masoud, M.; Wu, X. Innovation-driven industrial green development: The moderating role of regional factors. J. Clean. Prod. 2019, 222, 344–354. [Google Scholar] [CrossRef]
- Hauser, J.; Tellis, G.J.; Griffin, A. Research on Innovation: A Review and Agenda. Mark. Sci. 2006, 25, 687–717. [Google Scholar] [CrossRef] [Green Version]
- Glemarec, Y.; de Oliveira, J.A.P. The role of the visible hand f public institutions in creating a sustainable future. Public Adm. Dev. 2012, 32, 200–214. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, W.; Li, T.; Cong, W.; Zhang, H.; Shi, J. A Principal component analysis based three-dimensional sustainability assessmement model to evaluate corporate sustainable performance. J. Clean. Prod. 2018, 187, 625–637. [Google Scholar] [CrossRef]
- Yang, J.S. The Governance Environment and Innovative SMEs, The 2015 Doing Business: Past, Present and Future of Business Regulation Conference; World Bank: Washington, DC, USA, 2016; pp. 1–27. [Google Scholar]
- Buhr, D. Industry 4.0—New Task for Innovation Policy. 2017. Available online: https://library.fes.de/pdf-files/wiso/11480.pdf (accessed on 4 February 2022).
- Dixit, A.; Jakhar, S.K.; Kumar, P. Does lean and sustainable manufacturing lead to Industry 4.0 adoption: The mediating role of ambidextrous innovation capabilities. Technol. Forecast. Soc. Chang. 2022, 175, 121328. [Google Scholar] [CrossRef]
- Gülel, F.E.; Arpacı, Ö.Y. The Impact of Outsourcing and Innovation on Industry 4.0. In Advances in Econometrics, Operational Research, Data Science and Actuarial Studies. Contributions to Economics; Terzioğlu, M.K., Ed.; Springer: Cham, Switzerland, 2022; pp. 235–250. [Google Scholar]
- Top 10 Industry 4.0 Trends & Innovations in 2022. Available online: https://www.startus-insights.com/innovators-guide/top-10-industry-4-0-trends-innovations-in-2021/ (accessed on 4 February 2022).
- Bigliardi, B.; Bottani, E.; Casella, G. Enabling technologies, application areas and impact of industry 4.0: A bibliographic analysis. Procedia Manuf. 2020, 42, 322–326. [Google Scholar] [CrossRef]
- Ibarra, D.; Ganzarain, J.; Igartua, J.I. Business model innovation through Industry 4.0: A review. Procedia Manuf. 2017, 22, 4–10. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M.; Grybauskas, A.; Vilkas, M.; Petraitė, M. Process innovation through industry 4.0 technologies, lean practices and green supply chains. Res. Transp. Econ. 2022, 90, 100869. [Google Scholar]
- Dilyard, J.; Zhao, S.; You, J.J. Digital innovation and Industry 4.0 for global value chain resilience: Lessons learned and ways forward. Thunderbird Int. Bus. Rev. 2021, 63, 577–584. [Google Scholar] [CrossRef]
- Mhlanga, D. Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability 2021, 13, 5788. [Google Scholar] [CrossRef]
- Lekan, A.; Clinton, A.; James, O. The disruptive adaptations of construction 4.0 and industry 4.0 as a pathway to a sustainable innovation and inclusive industrial technological development. Buildings 2021, 11, 79. [Google Scholar] [CrossRef]
- Hizam-Hanafiah, M.; Soomro, M.A. The situation of technology companies in industry 4.0 and the open innovation. J. Open Innov. 2021, 7, 34. [Google Scholar] [CrossRef]
- Industry 4.0 and Open Innovations. Available online: https://iiot-world.com/industrial-iot/digital-disruption/industrial-iot-and-open-innovation/ (accessed on 4 February 2022).
- Osorno-Hinojosa, R.; Koria, M.; Ramirez-Vasquez, D.C. Open Innovation with Value Co-Creation from University–Industry Collaboration. J. Open Innov. Technol. Mark. Complex. 2022, 8, 32. [Google Scholar] [CrossRef]
- Peters, H. How could Industry 4.0 transform the steel industry? In Future Steel Forum; International Steel Times International: Warsaw, Poland, 2017. [Google Scholar]
- Pinkham, M. Digital Technologies Increase Momentum. 2018. Available online: https://www.amm.com/Article/3810294/Digital-technologies-increase-momentum.html (accessed on 4 February 2022).
- De Paula, G.M. Nota Técnica do Sistema Produtivo Insumos Básicos e Foco Setorial Siderurgia. Relatório do Projeto Indústria 2027: Riscos e Oportunidades para o Brasil Diante de Inovações Disruptivas. Rio de Janeiro: IE-UFRJ; IE-Unicamp: Campinas, Brazil, 2017. [Google Scholar]
- Martins, M.S.; de Paula, G.M.; Botelho, M.D.R.A. Technological Innovations and Industry 4.0 in the Steel Industry: Diffusion, Market Structure and Intra-Sectoral Heterogeneity. Rev. Bras. Inov. Camp. 2021, 20, e021006. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technol. Forecast. Soc. Chang. 2019, 146, 119–132. [Google Scholar]
- Bauer, W.; Hämmerle, M.; Schlund, S.; Vocke, C. Transforming to a hyper-connected society and economy—Towards an “Industry 4.0.”. Procedia Manuf. 2015, 3, 417–424. [Google Scholar] [CrossRef]
- Lasi, H.; Kemper, H.-G.; Fettke, P.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Szalavetz, A. Industry 4.0 and capability development in manufacturing subsidiaries. Technol. Forecast. Soc. Chang. 2018, 145, 384–395. [Google Scholar] [CrossRef]
- Frank, A.G.; Mendes, G.H.S.; Ayala, N.F.; Ghezzi, A. Servitization and industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technol. Forecast. Soc. Chang. 2019, 141, 341–351. [Google Scholar] [CrossRef]
- Kiel, D.; Arnold, C.; Voigt, K.-I. The influence of the industrial internet of things on business models of established manufacturing companies—A business level perspective. Technovation 2017, 68, 4–19. [Google Scholar] [CrossRef]
- Karre, H.; Hammer, M.; Kleindienst, M.; Ramsauer, C. Transition towards an industry 4.0 state of the LeanLab at Graz University of Technology. Procedia Manuf. 2017, 9, 206–213. [Google Scholar] [CrossRef]
- Erol, S.; Jäger, A.; Hold, P.; Ott, K.; Sihn, W. Tangible industry 4.0: A scenariobased approach to learning for the future of production. Procedia CIRP 2016, 54, 13–18. [Google Scholar] [CrossRef]
- Nagy, J. Az ipar 4.0 fogalma és kritikus kérdései—Vállalati interjúk alapján. Vezetéstudomány 2019, 50, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Kovács, O. The dark corners of industry 4.0—Grounding economic governance 2.0. Technol. Soc. 2018, 55, 140–145. [Google Scholar] [CrossRef]
- Basl, J. Pilot study of readiness of Czech companies to implement the principles of Industry 4.0. Manag. Prod. Eng. Rev. 2017, 8, 3–8. [Google Scholar] [CrossRef] [Green Version]
- von Leipzig, T.; Gamp, M.; Manz, D.; Schöttle, K.; Ohlhausen, P.; Oosthuizen, G.; Palm, D.; von Leipzig, K. Initialising customer-orientated digital transformation in enterprises. Procedia Manuf. 2017, 8, 517–524. [Google Scholar] [CrossRef]
- Studia na Kierunku Metalurgia. Program, Zasady Rekrutacji i Możliwości Pracy. Available online: https://studia.pl/studia-na-kierunku-metalurgia-program-zasady-rekrutacji-i-mozliwosci-pracy/ (accessed on 4 February 2022).
- Gajdzik, B.; Wolniak, R. Influence of the COVID-19 crisis on steel production in Poland compared to the financial crisis of 2009 and to boom periods in the market. Resources 2021, 10, 4. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Gale, R.J.; Stokoe, P.K. Environmental Cost Accounting and Business Strategy. In Handbook of Environmentally Conscious Manufacturing; Springer: Boston, MA, USA, 2001; pp. 119–136. [Google Scholar]
- Pilloni, V. How data will transform industrial processes: Crowdsensing, crowdsourcing and big data as pillars of industry 4.0. Future Int. 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, F.; Girolami, A.; Faraone, D.; Chaudhry, M.; Braghieri, A. Appearance, consumer liking and preferences of Lucanian ‘Soppressata’salami. Meat Sci. 2020, 167, 108159. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Zhang, T.C.; Jahromi, M.F.; Kizildag, M. Value co-creation in a sharing economy: The end of price wars? Int. J. Hosp. Manag. 2018, 71, 51–58. [Google Scholar] [CrossRef]
- Industry 4.0 Arcelor Mittal. Available online: https://corporate.arcelormittal.com/media/case-studies/industry-4-0 (accessed on 4 February 2022).
- Gajdzik, B. Research Was Realized According to Grant (no. 11/040/RGP20/0020); Silesian University of Technology: Gliwice, Poland, 2020. [Google Scholar]
- Cho, H.J.; Pucik, V. Relationship between innovativeness, quality, growth, profitability, and market. Strateg. Manag. J. 2005, 26, 555–575. [Google Scholar] [CrossRef]
- Cooper, R.G. New products: What distinguishes the winners. Res. Technol. Manag. 1990, 33, 27–31. [Google Scholar] [CrossRef]
- Maruyama, G.M. Basics of Structural Equation Modeling; Sage: Thousand Oaks, CA, USA, 1998. [Google Scholar]
- Quality 4.0 Impact and Strategy Handbook. Available online: https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper2/quality-4-0-impact-strategy-109087.pdf (accessed on 4 February 2022).
- Christou, I.T.; Kefalkis, N.; Soldatos, J.K.; Despotopoulou, A.M. End-to-end industrial IoT platform for Quality 4.0 applications. Comput. Ind. 2022, 137, 103591. [Google Scholar] [CrossRef]
- Saniuk, S.; Grabowska, S.; Gajdzik, B. Personalization of Products in the Industry 4.0 Concept and Its Impact on Achieving a Higher Level of Sustainable Consumption. Energies 2020, 13, 5895. [Google Scholar] [CrossRef]
- Venasen, J. What is personalization. A conceptual framework. Eur. J. Mark. 2007, 41, 409–418. [Google Scholar]
- Zhou, F.; Ji, Y.; Jiao, R. Affective and cognitive design for mass personalization: Status and prospect. J. Intell. Manuf. 2013, 24, 1047–1069. [Google Scholar] [CrossRef]
- Arora, N.; Dreze, X.; Ghose, A.; Hess, J.; Iyengar, R.; Jing, B.; Joshi, Y.; Kumar, V.; Lurie, N.; Neslin, S.; et al. Putting one-to-one marketing to work: Personalization, customization, and choice. Mark. Lett. 2008, 19, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, F.A.; Suseno, B.D. Sustainability Innovativeness Agility as an Intervening Variable in the Managerial Competence to Business Performance Relationship of a Family-Owned Company. Int. J. Innov. Creat. Chang. 2020, 13, 479–498. [Google Scholar]
- Korena, Y.; Shpitalnib, M.; Guc, P.; Hu, S.J. Product design for mass-individualization. Procedia CIRP 2015, 36, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. From mass customization to mass personalization: A strategic transformation. Int. J. Flex. Manuf. Syst. 2007, 19, 533–547. [Google Scholar] [CrossRef]
- Tseng, M.M.; Jiao, R.J.; Wang, C. Design for mass personalization. CIRP Ann. Manuf. Technol. 2010, 59, 175–178. [Google Scholar] [CrossRef]
- Chellappa, R.K.; Sin, R. Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Inf. Technol. Manag. 2005, 6, 181–202. [Google Scholar] [CrossRef]
- Birkel, H.S.; Veile, J.W.; Müller, J.M.; Hartmann, E.; Voigt, K.I. Development of a risk framework for Industry 4.0 in the context of sustainability for established manufacturers. Sustainability 2019, 11, 384. [Google Scholar]
- Torn, I.A.R.; Vaneker, T.H.J. Mass Personalization with Industry 4.0 by SMEs: A concept for collaborative networks. Procedia Manuf. 2019, 28, 135–141. [Google Scholar] [CrossRef]
- Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufact. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Belitski, M.; Chowdhury, F.; Desai, S. Texas, corruption and entry. Small Bus. Econ. 2016, 47, 201–216. [Google Scholar] [CrossRef]
- Wendler, R. Development of the Organizational Agility Maturity Model. In Proceedings of the 2014 Federated Conference on Computer Science and Information System, Warsaw, Poland, 7–10 September 2014; Volume 2, pp. 1197–1206. [Google Scholar]
- Ozaki, A.M.; de Vasconcellos, E.P.; Bengtsson, M. Agile Roadmapping: How Brazilian Software Companies Evolve Their Products. In Proceedings of the XXVI ISPIM Innovation Conference, Budapest, Hungary, 14–17 June 2015; pp. 436–457. [Google Scholar]
- Holsapple, C.W.; Li, X. Understanding Organizational Agility: A Work-Design Perspective. In Proceedings of the 13th International Command and Control Research and Technology Sympsia (ICCRTS 2018), Seattle, WA, USA, 17–19 June 2018. [Google Scholar]
- Nejatian, M.; Zarei, M.H.; Nejati, M.; Zanjirchi, S. A hybrid approach achieve organizational agility: An empirical study of a food company. Benchmarking 2018, 25, 201–234. [Google Scholar] [CrossRef]
- Teece, D.; Peteraf, M.; Leih, S. Dynamic Capabilities and Organizational Agility: Risk, Uncertainty, and Strategy in the Innovation Economy. Calif. Manag. Rev. 2016, 58, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Wufka, M.; Ralph, P. Explaining Agility with a Process Theory of Change. In Proceedings of the 2015 Agile conference, National Harbor, MD, USA, 3–7 August 2015; pp. 124–137. [Google Scholar]
- Al Taweel, I.R.; Al-Hawary, S.I. The Mediating Role of Innovation Capability on the Relationship between Strategic Agility and Organizational Performance. Sustainability 2021, 13, 7564. [Google Scholar] [CrossRef]
- Shams, R.; Vrontis, D.; Believer, Z.; Ferraris, A.; Czinkota, M.R. Strategic agility in international business: A conceptual framework for “agile” multinationals. J. Int. Manag. 2021, 27, 100737. [Google Scholar] [CrossRef]
- Bondzi-Simpson, P.E.; Agomor, K.S. Financing public universities in Ghana through strategic agility: Lessons from Ghana institute of management and public administration (GIMPA). Glob. J. Flex. Syst. Manag. 2021, 22, 1–15. [Google Scholar] [CrossRef]
- Iddris, F.; Baffour, G.A.; Abraha, D.G. The role of innovation capability in achieving supply chain agility. Int. J. Manag. Comput. Sci. 2014, 4, 104–112. [Google Scholar]
- Doz, Y.L.; Kosonen, M. Embedding Strategic Agility: A Leadership Agenda for Accelerating Business Model Renewal. Long Range Plan. 2010, 43, 370–382. [Google Scholar] [CrossRef]
- Chan, C.M.L.; Teoh, S.Y.; Yeow, A.; Pan, G. Agility in responding to disruptive digital innovation: Case study of an SME. Inf. Syst. J. 2019, 29, 436–455. [Google Scholar] [CrossRef]
- Sampath, G.; Krishnamoorthy, B. Is strategic agility the new Holy Grail? Exploring the strategic agility construct. Int. J. Bus. Excell. 2017, 13, 160–180. [Google Scholar]
- Doz, Y. Fostering strategic agility: How individual executives and human resource practices contribute. Hum. Resour. Manag. Rev. 2020, 30, 100693. [Google Scholar] [CrossRef]
- Fakunmoju, S.; Arokodare, M.; Makinde, G. Strategic Agility and Competitive Advantage of Oil and Gas Marketing Companies: The Moderating Effect of Information Technology Capability and Strategic Foresight. J. Account. Manag. 2020, 10, 97–113. [Google Scholar]
- Pereira, V.; Mellahi, K.; Temouri, Y.; Patnaik, S.; Roohanifar, M. Investigating dynamic capabilities, agility and knowledge management within EMNEs-longitudinal evidence from Europe. J. Knowl. Manag. 2019, 23, 1708–1728. [Google Scholar] [CrossRef] [Green Version]
- Kessler, E.H.; Chakrabarti, A.K. Innovation speed: A conceptual model of context, antecedents, and outcomes. Acad. Manag. Rev. 1996, 21, 1143–1191. [Google Scholar] [CrossRef]
- Sheng, S.; Zhou, K.Z.; Lessassy, L. NPD speed vs. innovativeness: The contingent impact of institutional and market environments. J. Bus. Res. 2013, 66, 2355–2362. [Google Scholar] [CrossRef]
- Ceccagnoli, M. Appropriability, preemption, and firm performance. Strateg. Manag. J. 2009, 30, 81–98. [Google Scholar] [CrossRef]
- Cohen, M.A.; Eliashberg, J.; Ho, T. New product development: The performance and time-to-market trade off. Manag. Sci. 1996, 42, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Tuominen, M.; Rajala, A.; Möller, K.; Anttila, M. Assessing innovativeness through organisational adaptability: A contingency approach. Int. J. Technol. Manag. 2003, 25, 643–658. [Google Scholar] [CrossRef]
- Kabak, Ö.; Ülengin, F.; Çekyay, B.; Önsel, Ş.; Özaydın, Ö. Critical Success Factors for the Iron and Steel Industry in Turkey: A Fuzzy DEMATEL Approach. Int. J. Fuzzy Syst. 2016, 18, 523–536. [Google Scholar] [CrossRef]
- Kasekhedikar, K.; Rahate, H.; Rewatkar, S. Critical success factors for steel casting industries in Vidharbha region—India. Int. J. Res. Aeronaut. Mech. Eng. 2013, 7, 217–227. [Google Scholar]
- Hetkamp, M. Success Factors of Change Management in the European Steel Market. 2012. Available online: https://eprints.usq.edu.au/23126/ (accessed on 4 February 2022).
- Gajdzik, B. How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry. Eur. Res. Stud. J. 2022, 25, 27–42. [Google Scholar] [CrossRef]
- Wolniak, R.; Saniuk, S.; Grabowska, S.; Gajdzik, B. Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example. Energies 2020, 13, 2867, e-ISSN 1996-1073. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W. Resource Intensity vs. Investment in Production Installations—The Case of the Steel Industry in Poland. Energies 2021, 14, 443. [Google Scholar] [CrossRef]
- Gajdzik, B.; Sroka, W.; Vveinhardt, J. Energy Intensity of Steel Manufactured Utilising EAFTechnology as a Function of Investments Made: The Case of the Steel Industry in Poland. Energies 2021, 14, 5152. [Google Scholar] [CrossRef]
- Turoń, K. From the Classic Business Model to Open Innovation and Data Sharing—The Concept of an Open Car-Sharing Business Model. J. Open Innov. Technol. Mark. Complex. 2022, 8, 36. [Google Scholar] [CrossRef]
- Moradi, E.; Jafari, S.M.; Doorbash, Z.M.; Mirzaei, A. Impact of organizational inertia on business model innovation, open innovation and corporate performance. Asia Pac. Manag. Rev. 2021, 26, 171–179. [Google Scholar] [CrossRef]
- Peñarroya-Farell, M.; Miralles, F. Business Model Dynamics from Interaction with Open Innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 81. [Google Scholar] [CrossRef]
- Bogers, M.; Chesbrough, H.; Heaton, S.; Teece, D.J. Strategic Management of Open Innovation: A Dynamic Capabilities Perspective. Calif. Manag. Rev. 2019, 62, 77–94. [Google Scholar] [CrossRef]
- Turoń, K.; Kubik, A. Business Innovations in the New Mobility Market during the COVID-19 with the Possibility of Open Business Model Innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 195. [Google Scholar] [CrossRef]
- Najar, T. Antecedents to open business model in the ICT-based sectors. J. High Technol. Manag. Res. 2020, 31, 100388. [Google Scholar] [CrossRef]
- Khumalo, M.; Lingen, E.V. The Open Business Model in a Dynamic Business Environment: A Literature Review. S. Afr. J. Ind. Eng. 2017, 28, 147–160. [Google Scholar] [CrossRef]
- Tsutsui, Y.; Yamada, N.; Mitake, Y.; Sholihah, M.; Shimomura, Y. A Strategic Design Guideline for Open Business Models. Int. J. Autom. Technol. 2020, 14, 678–689. [Google Scholar] [CrossRef]
- Iivari, M.; Ahokangas, P.; Matinmikko-Blue, M.; Yrjölä, S. Opening Closed Business Ecosystem Boundaries with Digital Platforms: Empirical Case of a Port. In Emerging Ecosystem-Centric Business Models for Sustainable Value Creation; IGI Global: Philadelphia, PA, USA, 2022; pp. 67–96. [Google Scholar]
- Gajdzik, B.; Sroka, W. Analytic study of the capital restructuring processes in metallurgical enterprises around the world and in Poland. Metalurgija 2021, 51, 265–268. [Google Scholar]
Number of Category | Name of Category | Description of Category |
---|---|---|
R_1 | productivity and management | Influence of SM projects on machinery productivity and improved energy and raw material management |
R_2 | speed and agility | Improving the analysis of production and production-related processes by obtaining information about the entire process in real time and through intelligent decision-making systems (Intelligent Decision-Making) with AI algorithms and high speed information technologies (High Speed Information) |
R_3 | adaptability and precision | Increasing the ability to perform business processes and the accuracy of operations, as well as increasing the speed of operations in entire production systems |
R_4 | flexibility and reliability | Increasing the flexibility of business processes through quick responding to changes and increase of the reliability of machinery operation—less technological downtime |
R_5 | staff and manual reduction | Reducing the number of direct production workers and manual activities |
R_6 | quality and personalisation | Improving the quality of products and increasing the personalisation of products—greater possibility of individual adjustment of products and services to customer needs, including the reduction of complaints |
R_7 | cost reduction | Decreasing of the costs of production and other business costs |
R_8 | profitability | Increasing of the profit: income from the production of unique products of high quality and personalized products in relation to production costs |
R_9 | enterprise value and competitiveness | Increasing of the market value of the enterprise through automation and robotization of operations (substitution of manual work by technology) and smart technological solutions |
R_10 | supply and cooperation | Increasing the flexibility of deliveries according to the JiT concept (quick and improved order processing) |
R_11 | integration and block chain | Increasing the involvement of companies (capital groups) in supply chain management (product tracking) and block chain activities on the steel global market |
1 | 2 | 3 | 4 | 5 | Total | |
---|---|---|---|---|---|---|
R_1 | 0 | 9 | 16 | 36 | 18 | 79 |
R_2 | 0 | 0 | 12 | 31 | 36 | 79 |
R_3 | 0 | 1 | 12 | 30 | 36 | 79 |
R_4 | 0 | 11 | 25 | 27 | 16 | 79 |
R_5 | 11 | 17 | 15 | 19 | 17 | 79 |
R_6 | 0 | 0 | 8 | 31 | 40 | 79 |
R_7 | 15 | 30 | 13 | 14 | 7 | 79 |
R_8 | 4 | 18 | 17 | 25 | 15 | 79 |
R_9 | 0 | 7 | 11 | 33 | 28 | 79 |
R_10 | 2 | 6 | 19 | 29 | 23 | 79 |
R_11 | 1 | 18 | 20 | 22 | 18 | 79 |
Total | 33 | 117 | 168 | 297 | 254 |
Position | Symbol | Category | Number | % |
---|---|---|---|---|
1 | R_6 | quality and personalisation | 71 | 89.9 |
2 | R_2 | speed and agility | 67 | 84.8 |
3 | R_3 | adaptability and work precision | 66 | 83.5 |
4 | R_9 | value and competitiveness | 61 | 77.2 |
5 | R_1 | productivity and management | 54 | 68.4 |
6 | R_10 | supply and cooperation | 52 | 65.8 |
7 | R_4 | flexibility and reliability | 43 | 54.4 |
8 | R_8 | profitability | 40 | 50.6 |
9 | R_11 | integration and block chain | 40 | 50.6 |
10 | R_5 | staff reduction and manual operation reduction | 36 | 45.6 |
11 | R_7 | cost reduction | 21 | 26.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Wolniak, R. Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland. J. Open Innov. Technol. Mark. Complex. 2022, 8, 44. https://doi.org/10.3390/joitmc8010044
Gajdzik B, Wolniak R. Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland. Journal of Open Innovation: Technology, Market, and Complexity. 2022; 8(1):44. https://doi.org/10.3390/joitmc8010044
Chicago/Turabian StyleGajdzik, Bożena, and Radosław Wolniak. 2022. "Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland" Journal of Open Innovation: Technology, Market, and Complexity 8, no. 1: 44. https://doi.org/10.3390/joitmc8010044
APA StyleGajdzik, B., & Wolniak, R. (2022). Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 44. https://doi.org/10.3390/joitmc8010044