New Approaches to Determining the D/H Ratio in Aqueous Media Based on Diffuse Laser Light Scattering for Promising Application in Deuterium-Depleted Water Analysis in Antitumor Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
Study Design
2.2. Methods
2.2.1. Two-Dimensional Diffuse Laser Scattering (2D-DLS)
2.2.2. Study Design
2.2.3. Dynamic Light Scattering (DLS)
2.2.4. Static Light Scattering (SLS)
2.2.5. Determination of the Optical Rotation (OR)
2.2.6. The Refractive Index (RI) Determines
2.2.7. Spirotox-Method
2.3. Statistical Data Processing
3. Results
3.1. Biological Effects of Deuterium-Depleted Water (Light Water)
3.2. The Description of Surface “Scatterers”
3.3. The Validation of the Portable Device to Monitor D/H Ratio in Water Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
in situ | the original (primary, without movement) location of experiments |
Bd | water bidistilled |
CCD | charge-coupled device |
CAT | catalase |
CRM | confocal Raman microscopy |
CR | count rate |
DDW | deuterium-depleted water |
DLS | dynamic light scattering |
DSpc | dynamic speckle |
DS | diagnostic sign |
5-FU | 5-fluorouracil |
obsEa | activation energy observed |
2D-DLS | two-dimensional diffuse laser scattering |
GBM | glioblastoma multiforme |
GC/MS | gas chromatography mass spectrometry |
GCOS | global climate observing system |
GNIR | global network of isotopes in rivers |
GNIP | global network of isotopes in precipitation |
GISP | Greenland ice sheet precipitation |
GRESP | Greenland summit precipitation |
G1/S | transition G1 phase ends when the cell moves into the s phase of interphase |
MCF-7 | Michigan Cancer Foundation-7 |
OR | optical rotation |
IAEA | international atomic energy agency |
IR | infra-red |
IR-MS | isotope ratio mass spectrometers |
IRIS | isotope ratio infrared spectroscopy |
LED | light-emitting diode |
LC/MS | liquid chromatography mass spectrometry |
LAP | standard Light Antarctic Precipitation |
LALLS | low-angle laser light scattering |
PSD | particle size distribution |
ppm | part per million |
PDI | polydispersity Index |
RI | refractive index |
QSAR | quantitative structure–activity relationship |
RT | radiation therapy |
SMOW-V | Vienna standard mean ocean water |
SNR | signal to noise ratio |
SOD | superoxide dismutase |
TMZ | temozolomide |
References
- Hughes, J. Making isotopes matter: Francis Aston and the mass-spectrograph December. Dynamis 2009, 29, 131–165. [Google Scholar] [CrossRef]
- Harold, C.; Urey, F.G.; Brickwedde, G.M.; Murphy, A. Hydrogen Isotope of Mass 2 and its Concentration. Phys. Rev. 1932, 40, 1. [Google Scholar]
- Watanabe, H.; Lorusso, G.; Nishimura, S.; Xu, Z.Y.; Sumikama, T.; Söderström, P.A.; Doornenbal, P.; Browne, F.; Gey, G.; Jung, H.S. Isomers in 128Pd and 126Pd: Evidence for a robust shell closure at the neutron magic number 82 in exotic palladium isotopes. Phys. Rev. 2013, 111, 152501. [Google Scholar]
- Yang, H.B. Discovery of new isotopes 160Os and 156W: Revealing enhanced stability of the N = 82 shell closure on the neutron-deficient side. Phys. Rev. Lett. 2024, 132, 072502. [Google Scholar] [CrossRef]
- Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; et al. Production and Supply of α-Particle-Emitting Radionuclides for Targeted α-Therapy. J. Nucl. Med. 2021, 62, 1495–1503. [Google Scholar] [CrossRef]
- Carpentier, A.C. Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues. Physiology 2024, 39, 61–72. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Crossland, H.; Atherton, P.J. Metabolomic and proteomic applications to exercise biomedicine. Transl. Exerc. Biomed. 2024, 1, 9–22. [Google Scholar] [CrossRef]
- Brook, M.S.; Wilkinson, D.J. Contemporary stable isotope tracer approaches: Insights into skeletal muscle metabolism in health and disease. Exp. Physiol. 2020, 105, 1081–1089. [Google Scholar] [CrossRef]
- Kim, I.Y.; Suh, S.H.; Lee, I.K. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp. Mol. Med. 2016, 48, e203. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Chinkes, D.L. Isotope Tracers in Metabolic Research, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Wilkinson, D.J.; Brook, M.S.; Smith, K.; Atherton, P.J. Stable isotope tracers and exercise physiology: Past, present and future. J. Physiol. 2017, 595, 2873–2882. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Michael, B.; Willi, A.B.; De Bièvre, P.; Manfred, G.; Holden, N.E.; Johanna, I.; Loss, R.D.; Walczyk, T.; et al. Isotopic compositions of the elements 2013. Pure Appl. Chem. 2016, 88, 293–306. [Google Scholar] [CrossRef]
- O’Grady, S.P.; Valenzuela, L.O.; Remien, C.H.; Enright, L.E.; Jorgensen, M.J.; Kaplan, J.R.; Wagner, J.D.; Cerling, T.E.; Ehleringer, J.R. Hydrogen and oxygen isotope ratios in body water and hair: Modeling isotope dynamics in nonhuman primates. Am. J. Primatol. 2012, 74, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Abudouwaili, Z.; Yang, Y.; Feng, X. Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin. Water 2023, 15, 3127. [Google Scholar] [CrossRef]
- Borodulina, G.; Tokarev, I.; Yakovlev, E. Isotope Composition of Natural Water in Lake Onega Basin. Water 2023, 15, 1855. [Google Scholar] [CrossRef]
- Groning, M.; Van Duren, M.; Andreescu, L. Metrological Characteristics of the Conventional Measurement Scales for Hydrogen and Oxygen Stable Isotope Amount Ratios: The δ-Scales. In Combining and Reporting Analytical Results; Belli, M., Fajgelj, A., Sansone, U., Eds.; The Royal Society of Chemistry: London, UK, 2007; pp. 62–72. [Google Scholar]
- Valenzuela, L.O.; O’Grady, S.P.; Ehleringer, J.R. Variations in human body water isotope composition across the United States. Forensic Sci. Int. 2021, 327, 110990. [Google Scholar] [CrossRef]
- Su, Y.; Otake, K.; Zheng, J.J.; Satoshi, H.; Susumu, K.; Cheng, G. Separating water isotopologues using diffusion-regulatory porous materials. Nature 2022, 611, 289–294. [Google Scholar] [CrossRef]
- Basov, A.; Fedulova, L.; Baryshev, M.; Dzhimak, S. Deuterium-Depleted Water Influence on the Isotope 2H/1H Regulation in Body and Individual Adaptation. Nutrients 2019, 11, 1903. [Google Scholar] [CrossRef]
- Rea, E. The Theory of Relativity and Applications: A Simple Introduction. Downt. Rev. 2018, 5, 1. [Google Scholar]
- Jasprica, I.; Horvat, P.; Zrnc, K.; Bonney, K.J.; Bjornstad, V.; Hok, L.; Vianello, R.; Bregović, N.; Požar, J.; Leko, K.; et al. Utilization of a kinetic isotope effect to decrease decomposition of ceftriaxone in a mixture of D2O/H2O. Eur. J. Pharm. Sci. 2023, 187, 106461. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, H. Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients 2024, 16, 1397. [Google Scholar] [CrossRef]
- Zlatskiy, I.; Pleteneva, T.; Skripnikov, A.; Grebennikova, T.; Maksimova, T.; Antipova, N.; Levitskaya, O.; Makarova, M.; Selivanenko, I.; Syroeshkin, A. Dependence of Biocatalysis on D/H Ratio: Possible Fundamental Differences for High-Level Biological Taxons. Molecules 2020, 25, 4173. [Google Scholar] [CrossRef] [PubMed]
- Jandova, J.; Hua, A.B.; Fimbres, J.; Wondrak, G.T. Deuterium Oxide (D2O) Induces Early Stress Response Gene Expression and Impairs Growth and Metastasis of Experimental Malignant Melanoma. Cancers 2021, 13, 605. [Google Scholar] [CrossRef] [PubMed]
- Yaglova, N.V.; Timokhina, E.P.; Obernikhin, S.S.; Yaglov, V.V. Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. Int. J. Mol. Sci. 2023, 24, 3107. [Google Scholar] [CrossRef] [PubMed]
- Kselíková, V.; Vítová, M.; Bišová, K. Deuterium and its impact on living organisms. Folia Microbiol. 2019, 64, 673–681. [Google Scholar] [CrossRef]
- Somlyai, G.; Jancso, G. Naturally occurring deuterium is essential for the normal growth rate of cells. FEBS Lett. 1993, 7, 344–366. [Google Scholar] [CrossRef]
- Kharaeva, Z.; Hokonova, T.; Elmurzaeva, J.; Dzamihova, I.; Mayer, W.; De Luca, C.; Trakhtman, I.; Korkina, L. Effects of Heavy Isotopes (2H1 and 18O16) Depleted Water Con-Sumption on Physical Recovery and Metabolic and Immunological Parameters of Healthy Volunteers under Regular Fitness Load. Sports 2021, 9, 110. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, B.; He, Z.; Fu, H.; Dai, Z.; Huang, G.; Li, B.; Qin, D.; Zhang, X.; Tian, L.; et al. Deuterium-depleted water (DDW) inhibits the proliferation and migration of nasopharyngeal carcinoma cells in vitro. Biomed. Pharmacother. 2013, 67, 489–496. [Google Scholar] [CrossRef]
- Somlyai, G.; Kovács, B.Z.; Papp, A.; Somlyai, I. A Preliminary Study Indicating Improvement in the Median Survival Time of Glioblastoma Multiforme Patients by the Application of Deuterium Depletion in Combination with Conventional Therapy. Biomedicines 2023, 11, 1989. [Google Scholar] [CrossRef]
- Boros, L.G.; Somlyai, I.; Kovács, B.Z.; Puskás, L.G.; Nagy, L.I.; Dux, L.; Farkas, G.; Somlyai, G. Deuterium Depletion Inhibits Cell Proliferation, RNA and Nuclear Membrane Turnover to Enhance Survival in Pancreatic Cancer. Cancer Control 2021, 28, 1073274821999655. [Google Scholar] [CrossRef]
- Yavari, K.; Kooshesh, L. Deuterium Depleted Water Inhibits the Proliferation of Human MCF7 Breast Cancer Cell Lines by Inducing Cell Cycle Arrest. Nutr. Cancer 2019, 71, 1019–1029. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Fang, W.; Yang, H. Research progress of the inhibitory effect of deuterium-depleted water on cancers. J. South Med. Univ. 2012, 32, 1454–1456. [Google Scholar]
- Somlyai, G.; Kovács, B.Z.; Somlyai, I.; Papp, A.; Nagy, L.I.; Puskás, L.G. Deuterium depletion inhibits lung cancer cell growth and migration in vitro and results in severalfold increase of median survival time of non-small cell lung cancer patients receiving conventional therapy. J. Cancer Res. Ther. 2021, 9, 12–19. [Google Scholar]
- Kovács, B.Z.; Papp, A.; Somlyai, I.; Somlyai, G. Long-term survival rates of cancer patients chieved by deuterium depletion as an adjuvant treatment in spinal astrocytic glioma, carcinoma mammae and melanoma malignum. Clin. Med. Case Rep. 2023, 9, 2121. [Google Scholar]
- Zhang, X.; Gaetani, M.; Chernobrovkin, A.; Zubarev, R. Anticancer Effect of Deuterium Depleted Water - Redox Disbalance Leads to Oxidative Stress. Mol. Cell. Proteom. 2019, 18, 2373–2387. [Google Scholar] [CrossRef]
- Davoudpour, Y.; Kümmel, S.; Musat, N.; Richnow, H.H.; Schmidt, M. Tracking deuterium uptake in hydroponically grown maize roots using correlative helium ion microscopy and Raman micro-spectroscopy. Plant Methods 2023, 19, 71. [Google Scholar] [CrossRef]
- Ankner, J.F.; Heller, W.T.; Herwig, K.W.; Meilleur, F.; Myles, D.A. Neutron scattering techniques and applications in structural biology. Curr. Protoc. Protein Sci. 2013, 17, 16. [Google Scholar] [CrossRef]
- Wang, L.; Caylor, K.K.; Dragoni, D. On the calibration of continuous, high-precision δ18O and δ2H measurements using an off-axis integrated cavity output spectrometerr. Rapid Commun. Mass Spectrom. 2009, 23, 530–536. [Google Scholar] [CrossRef]
- Adsiz, C.; Skrzypek, G.; McCallum, J. The measurement of ambient air moisture stable isotope composition for the accurate estimation of evaporative losses. MethodsX 2023, 11, 102265. [Google Scholar] [CrossRef]
- Steele, Z.T.; Caceres, K.; Jameson, A.D.; Griego, M.; Rogers, E.J.; Whiteman, J.P. A protocol for distilling animal body water from biological samples and measuring oxygen and hydrogen stable isotopes via cavity ring-down spectroscopy. Isotopes Environ. Health Stud. 2024, 12, 3. [Google Scholar] [CrossRef]
- Fisher Scientific. Available online: https://www.fishersci.com/shop/products/deuterium-oxide-nmr-99-8-atom-d-acroseal-thermo-scientific/AC426931000 (accessed on 21 June 2024).
- Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; PubChem Compound Summary for CID 962, Water. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Water (accessed on 21 June 2024).
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 94th ed.; CRC: Boca Raton, FL, USA; London, UK, 2012; pp. 4–98. [Google Scholar]
- Goncharuk, V.V.; Pleteneva, T.V.; Grebennikova, T.V.; Syroeshkin, A.V.; Uspenskaya, E.V.; Antipova, N.V.; Kovalenko, V.F.; Saprykina, M.N.; Skilskaya, M.D.; Zlatskiy, I.A. Determination of Biological Activity of Water Having a Different Isotope Ratio of Protium and Deuterium. J. Water Chem. Technol. 2018, 40, 27–34. [Google Scholar] [CrossRef]
- Baek, Y.; Lee, K.; Oh, J.; Park, Y. Speckle-Correlation Scattering Matrix Approaches for Imaging and Sensing through Turbidity. Sensors 2020, 20, 3147. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, Y. Interpreting Intensity Speckle as the Coherency Matrix of Classical Light. Phys. Rev. Appl. 2019, 12, 024003. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Y.; Peng, S.; Liu, Y. Study on Speckle Noise Reduction in Laser Projection Displays. Photonics 2024, 11, 290. [Google Scholar] [CrossRef]
- Pérez, A.J.; González-Peña, R.J.; Braga, R., Jr.; Perles, Á.; Pérez–Marín, E.; García-Diego, F.J. A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation. Sensors 2018, 18, 190. [Google Scholar] [CrossRef] [PubMed]
- Schnars, U.; Falldorf, C.; Watson, J.; Jüptner, W. Digital Holography and Wavefront Sensing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kim, M.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Shkirin, A.V.; Babenko, V.A.; Sychev, A.A.; Lomkova, A.K.; Kulikov, E.S. Laser diagnostics of the Bubston phase in the bulk of aqueous salt solutions. Phys. Wave Phen. 2015, 23, 161–175. [Google Scholar] [CrossRef]
- Yurchenko, S.O.; Shkirin, A.V.; Ninham, B.W.; Sychev, A.A.; Babenko, V.A.; Penkov, N.V.; Kryuchkov, N.P.; Bunkin, N.F. Ion-Specific and Thermal Effects in the Stabilization of the Gas Nanobubble Phase in Bulk Aqueous Electrolyte Solutions. Langmuir 2016, 32, 11245–11255. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Syroeshkin, A.V.; Pleteneva, T.V.; Uspenskaya, E.V.; Levitskaya, O.V.; Tverdislov, V.A. On the possibility of chiral structure-density submillimeter inhomogeneities existing in water. J. Water Chem. Technol. 2017, 39, 319–324. [Google Scholar] [CrossRef]
- Fusi, L.; Farina, A.; Rosso, F.; Rajagopal, K. Thin-Film Flow of an Inhomogeneous Fluid with Density-Dependent Viscosity. Fluids 2019, 4, 30. [Google Scholar] [CrossRef]
- Kovalenko, K.V.; Krivokhizha, S.V.; Chaban, I.A. Detection of various phases in liquids from the hypersound velocity and damping near closed phase-separation regions of solutions. J. Exp. Theor. Phys. 2008, 106, 280–287. [Google Scholar] [CrossRef]
- Bunkin, N.; Sabirov, L.; Semenov, D.; Ismailov, F.; Khasanov, M. Nanoscale Structural Phase Transitions in Aqueous Solutions of Organic Molecules. Condens. Matter 2023, 8, 64. [Google Scholar] [CrossRef]
- Anand, M.; Rajagopal, K. A note on the flows of inhomogeneous fluids with shear-dependent viscosities. Arch. Mech. 2005, 57, 417–428. [Google Scholar]
- Rajagopal, K.; Srinivasa, A. Modeling anisotropic fluids within the frame- work of bodies with multiple natural configurations. J. Non-Newt. Fluid Mech. 2001, 99, 109–124. [Google Scholar] [CrossRef]
- Yakhno, T.; Yakhno, V. A Study of the Structural Organization of Water and Aqueous Solutions by Means of Optical Microscopy. Crystals 2019, 9, 52. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Lapshin, V.B.; Burdeinaya, T.N.; Pleteneva, T.V.; Chernopyatko, A.S.; Atamanenko, I.D.; Ul’yantsev, A.S.; Uspenskaya, E.V.; Todorov, A.O.; Taranov, V.V.; et al. Physicochemical Properties and Biological Activity of the Water Depleted of Heavy Isotopes. J. Water Chem. Technol. 2011, 33, 8–13. [Google Scholar] [CrossRef]
- Koldina, A.M.; Uspenskaya, E.V.; Borodin, A.A.; Pleteneva, T.V.; Syroeshkin, A.V. Light scattering in research and quality control of deuterium depleted water for pharmaceutical application. Int. J. Appl. Pharm. 2019, 11, 271–278. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Shkirin, A.V.; Kozlov, V.A.; Ninham, B.W.; Uspenskaya, E.V.; Gudkov, S.V. Near-surface structure of Nafion in deuterated water. J. Chem. Phys. 2018, 149, 164901. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, H.; Ni, K. Water clusters and density fluctuations in liquid water based on extended hierarchical clustering methods. Sci. Rep. 2022, 12, 8036. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, H.; Ni, K. A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow. Sci. Rep. 2021, 11, 9542. [Google Scholar] [CrossRef]
- Nilsson, A.; Pettersson, L.G.M. Perspective on the structure of liquid water. Chem. Phys. 2011, 389, 1–34. [Google Scholar] [CrossRef]
- Ochoa, E.; Goodman, J.W. Statistical properties of ray directions in a monochromatic speckle pattern. JOSA 1983, 73, 943–949. [Google Scholar] [CrossRef]
- Galić, I.; Habijan, M.; Leventić, H.; Romić, K. Machine Learning Empowering Personalized Medicine: A Comprehensive Review of Medical Image Analysis Methods. Electronics 2023, 12, 4411. [Google Scholar] [CrossRef]
- Liu, M.; Han, Y.; Xi, X.; Zhu, L.; Yang, S.; Tan, S.; Chen, J.; Li, L.; Yan, B. Multiscale Dense U-Net: A Fast Correction Method for Thermal Drift Artifacts in Laboratory NanoCT Scans of Semi-Conductor Chips. Entropy 2022, 24, 967. [Google Scholar] [CrossRef] [PubMed]
The Name of Standard | Reference Value | |||
---|---|---|---|---|
δ2H, ‰ * | 2H, ppm | δ18O, ‰ * | 18O, ppm | |
Vienna Standard Mean Ocean Water (SMOW-V) | 0 | 155.76 | 0 | 2005.20 |
Standard Light Antarctic Precipitation (SLAP) | −427.50 | 89.00 | −55.50 | 1894 |
Greenland Ice Sheet Precipitation (GISP) | −189.80 | 126.20 | −24.85 | 1955.37 |
Greenland Summit Precipitation (GRESP) | −258.0 | - | −33.40 | - |
Specifications | Water Samples | ||
---|---|---|---|
heavy water | water bidistilled | light water | |
Linear Formula +2D | D2O | H2O | H2O |
Molecular Weight, g/mol | 20.0276 | 18.0150 | 18.0106 |
Solubility in water | Miscible, exothermic reaction | Completely miscible | Miscible, exothermic reaction |
Physical Form | Liquid | Liquid | Liquid |
Color | Colorless | Colorless | Colorless |
pH | 7.4 | 5.7–7.5 | 6.0–8.0 ** |
Refractive Index | 1.32844 * | 1.33300 | 1.33335 |
Viscosity, cP ** | 1.107 | 1.012 **** | 0.987 **** |
Density, g/mL ** | 1.1056 | 0.9998 | 0.9969 **** |
Surface Tension, dyn/cm | 71.93 | 71.99 | 75.17 **** |
Melting Point, °C | 3.8 | 0 | 1.5 **** |
Boiling Point, °C | 101.42 | 99.97 *** | 93.70 **** |
Descriptor | Mathematical Representation | Description |
---|---|---|
d1 | it is the total number of elements. ∆Si is the value of differences in the signal level of the elements of two interference patterns. Sb is the threshold level of the signal. | The number of different elements, regardless of the degree of difference. |
d2 | is the average value of the signal level of all the elements of the original interference pattern. | The degree of difference for each discrete element based on the original interference pattern and the total intensity of the level of its signal. |
d3 | is the sum of maximum possible differences in terms of the signal level of all the relevant elements of the interference patterns of absolute black and absolute white. | The maximum value of possible differences between the interference patterns of absolute black and absolute white. |
Linear Dependence Parameters | y = ax + b | |||
---|---|---|---|---|
Constant (Free) Term, SD | Slope, SD | Coefficient of Determination, (R-Square) | Adjusted R2 | Pearson’s Coefficient, r |
90.06 ± 13.83 | 1.37 ± 0.13 | 0.975 | 0.966 | 0.987 |
y = 1.37∙x + 90.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syroeshkin, A.V.; Uspenskaya, E.V.; Levitskaya, O.V.; Kuzmina, E.S.; Kazimova, I.V.; Quynh, H.T.N.; Pleteneva, T.V. New Approaches to Determining the D/H Ratio in Aqueous Media Based on Diffuse Laser Light Scattering for Promising Application in Deuterium-Depleted Water Analysis in Antitumor Therapy. Sci. Pharm. 2024, 92, 63. https://doi.org/10.3390/scipharm92040063
Syroeshkin AV, Uspenskaya EV, Levitskaya OV, Kuzmina ES, Kazimova IV, Quynh HTN, Pleteneva TV. New Approaches to Determining the D/H Ratio in Aqueous Media Based on Diffuse Laser Light Scattering for Promising Application in Deuterium-Depleted Water Analysis in Antitumor Therapy. Scientia Pharmaceutica. 2024; 92(4):63. https://doi.org/10.3390/scipharm92040063
Chicago/Turabian StyleSyroeshkin, Anton V., Elena V. Uspenskaya, Olga V. Levitskaya, Ekaterina S. Kuzmina, Ilaha V. Kazimova, Hoang Thi Ngoc Quynh, and Tatiana V. Pleteneva. 2024. "New Approaches to Determining the D/H Ratio in Aqueous Media Based on Diffuse Laser Light Scattering for Promising Application in Deuterium-Depleted Water Analysis in Antitumor Therapy" Scientia Pharmaceutica 92, no. 4: 63. https://doi.org/10.3390/scipharm92040063
APA StyleSyroeshkin, A. V., Uspenskaya, E. V., Levitskaya, O. V., Kuzmina, E. S., Kazimova, I. V., Quynh, H. T. N., & Pleteneva, T. V. (2024). New Approaches to Determining the D/H Ratio in Aqueous Media Based on Diffuse Laser Light Scattering for Promising Application in Deuterium-Depleted Water Analysis in Antitumor Therapy. Scientia Pharmaceutica, 92(4), 63. https://doi.org/10.3390/scipharm92040063