Model Adequacy in Assessing the Predictive Performance of Regression Models in Pharmaceutical Product Optimization: The Bedaquiline Solid Lipid Nanoparticle Example
Abstract
:1. Introduction
1.1. First-Order Statistical Analysis
1.2. Multifactored Experimental Design
1.3. Central Composite Design (CCD)
- Factorial runs (2n): these experiments investigate each variable at two pre-defined levels.
- Axial points (2n): these additional runs explore values beyond the initial two levels for each variable, often denoted as ±α from the center point.
- Center points (nc): replicates are performed at a central point, where all variables are set at their mid-point values.
2. Materials and Methods
2.1. Experimental Design
2.2. Generating Experimental Data from DOE Trial Runs
2.3. Model Development and Analyses
2.3.1. Model Fitting Using a First-Order Polynomial
2.3.2. Statistical Analysis and Optimization Using a Second-Order Model
2.3.3. Model Fitting Parameters
2.4. Stepwise Evaluation of the Regression Model’s Adequacy
2.5. Contour Plots
3. Results
3.1. Model Fitting Using a First-Order Polynomial
3.1.1. ANOVA Test Results for the BQ SLN Formulations
3.1.2. Summary of the First-Order Regression Models
3.2. Model Fitting Using a Second-Order Polynomial (CCD)
Model-Adequacy Checks for the First- and Second-Order Regression Models Used to Evaluate Sonicated BQ SLN Formulations
3.3. Model Summary for First-Order Regression for the Sonicated Samples
3.4. Model Summary for Second-Order Regression for the Sonicated Samples
3.5. Optimization for BQ SLNs Formulations
3.5.1. Contour and Response Surface Plots (2D and 3D RSM)
3.5.2. Effect of BQ and T80 on PdI
3.5.3. Effect of BQ and T80 on Z Average (PSD)
3.5.4. Effect of BQ and T80 on ZP
3.6. Graphical Optimization
4. Discussion
4.1. Model Fitting Using First-Order Polynomials for Sonicated and Unsonicated Samples
4.2. Model Summary for First- and Second-Order Regression for the Sonicated Samples
4.3. Effects of Input Variables in First- and Second-Order Model Sonicated BQ SLN Formulations
4.4. Significance of the Second-Order Polynomial Model Equations
4.5. Justifying the Use of the Quadratic Model in RSM Optimization
4.6. Optimization Using 2D and 3D RSM
4.6.1. Effect of BQ and T80 on PdI
4.6.2. Effect of BQ and T80 on Z Average (PSD)
4.6.3. Effect of BQ and T80 on ZP
4.7. Graphical Optimization to Define a Design Space for the BQ SLN Formulations
4.8. Future Studies
4.9. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doroudian, M.; Armstrong, M.E.; Donnelly, S.C. Nano-based therapies for acute and chronic lung diseases. In Biotechnology Applied to Inflammatory Diseases: Cellular Mechanisms and Nanomedicine; Springer: Berlin/Heidelberg, Germany, 2023; pp. 271–286. [Google Scholar]
- Luo, W.-C.; Lu, X. Solid lipid nanoparticles for drug delivery. In Liposomes: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2023; pp. 139–146. [Google Scholar]
- Okezue, M.A.; Uche, C.; Adebola, A.; Byrn, S.R. A Quality by Design Approach for Optimizing Solid Lipid Nanoparticles of Bedaquiline for Improved Product Performance. AAPS PharmSciTech 2024, 25, 152. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023; Available online: https://reliefweb.int/report/world/global-tuberculosis-report-2023?gad_source=1&gclid=Cj0KCQjw8pKxBhD_ARIsAPrG45nT5QmUp6oan9ISNjIhoCUeTFNJLY6TPHYvbf8hRdGHCT9byb64Bp8aAmTnEALw_wcB (accessed on 21 April 2024).
- Elbrink, K.; Van Hees, S.; Chamanza, R.; Roelant, D.; Loomans, T.; Holm, R.; Kiekens, F. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: In vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2021, 163, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Adam, S.K.; Alias, E.; Meor Mohd Affandi, M.M.R.; Shamsuddin, A.F.; Basir, R. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. Molecules 2021, 26, 5432. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res. 2020, 22, 141. [Google Scholar] [CrossRef]
- Sahu, J.N.; Acharya, J.; Meikap, B.C. Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J. Hazard. Mater. 2009, 172, 818–825. [Google Scholar] [CrossRef]
- Luiz, M.T.; Viegas, J.S.R.; Abriata, J.P.; Viegas, F.; de Carvalho Vicentini, F.T.M.; Bentley, M.V.L.B.; Chorilli, M.; Marchetti, J.M.; Tapia-Blacido, D.R. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur. J. Pharm. Biopharm. 2021, 165, 127–148. [Google Scholar] [CrossRef]
- Bhattacharya, S. Central composite design for response surface methodology and its application in pharmacy. In Response Surface Methodology in Engineering Science; IntechOpen: London, UK, 2021. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sarrai, A.E.; Hanini, S.; Merzouk, N.K.; Tassalit, D.; Szabó, T.; Hernádi, K.; Nagy, L. Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-fenton reaction. Materials 2016, 9, 428. [Google Scholar] [CrossRef]
- Lamidi, S.; Olaleye, N.; Bankole, Y.; Obalola, A.; Aribike, E.; Adigun, I. Applications of Response Surface Methodology (RSM) in Product Design, Development, and Process Optimization; IntechOpen: London, UK, 2022. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John wiley & sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bushra, R.; Shoaib, M.H.; Ali, H.; Zafar, F.; Naeem, M.I.; Aslam, N.; Yousuf, R.I. Formulation design and optimization of aceclofenac tablets (100 mg) using central composite design with response surface methodology. Lat. Am. J. Pharm. 2014, 33, 1009–1018. [Google Scholar]
- SAS Institute Inc. JMP Pro 15.1.0 (426298). JMP Statistical Discovery From SAS 2019. Available online: https://www.jmp.com (accessed on 20 January 2022).
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Çaydaş, U.; Hasçalik, A. Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology. Int. J. Adv. Manuf. Technol. 2008, 38, 1148–1156. [Google Scholar] [CrossRef]
- Eid, A.M.; Elmarzugi, N.A.; Jaradat, N.A. Influence of sonication and in vitro evaluation of nifedipine self-nanoemulsifying drug delivery system. Braz. J. Pharm. Sci. 2019, 55, e17497. [Google Scholar] [CrossRef]
- Mohammed, E.A.; Far, B.H.; Naugler, C. Applications of the MapReduce programming framework to clinical big data analysis: Current landscape and future trends. BioData Min. 2014, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Adamo, L.; Birnbaum, P.; Kräusel, V.; Penta, F.; Lanzotti, A. A Response Surface Methodology Approach to Develop a Multiphysics Simulation Model of a Tensile Friction Test. Eng. Proc. 2022, 26, 22. [Google Scholar] [CrossRef]
- Freckleton, R.P. Special feature: 5th anniversary of Methods in Ecology and Evolution. Methods Ecol. Evol. 2016, 7, 634–635. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Mondal, N.K.; Chattoraj, S. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int. J. Mod. Sci. 2016, 2, 145–155. [Google Scholar] [CrossRef]
- Beyene, K.A. Comparative study of linear and quadratic model equations for prediction and evaluation of surface roughness of a plain-woven fabric. Res. J. Text. Appar. 2023, 27, 281–298. [Google Scholar] [CrossRef]
- Brunaugh, A.D.; Smyth, H.D.C.; Williams Iii, R.O. Essential Pharmaceutics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Malvern Instruments pdf. Zeta Potential—An Introduction in 30 Minutes. 2015. Available online: https://www.research.colostate.edu/wp-content/uploads/2018/11/ZetaPotential-Introduction-in-30min-Malvern.pdf (accessed on 25 January 2024).
- Corrie, L.; Gundaram, R.; Kukatil, L. Formulation and evaluation of Cassia tora phytosomal gel using central composite design. Recent Innov. Chem. Eng. (Former. Recent Pat. Chem. Eng.) 2021, 14, 347–357. [Google Scholar] [CrossRef]
- Kasemiire, A.; Avohou, H.T.; De Bleye, C.; Sacre, P.-Y.; Dumont, E.; Hubert, P.; Ziemons, E. Design of experiments and design space approaches in the pharmaceutical bioprocess optimization. Eur. J. Pharm. Biopharm. 2021, 166, 144–154. [Google Scholar] [CrossRef]
- Manzon, D.; Claeys-Bruno, M.; Declomesnil, S.; Carité, C.; Sergent, M. Quality by design: Comparison of design space construction methods in the case of design of experiments. Chemom. Intell. Lab. Syst. 2020, 200, 104002. [Google Scholar] [CrossRef]
- Lievense, R. Pharmaceutical Quality by Design Using JMP: Solving Product Development and Manufacturing Problems; Sas Institute: Cary, NC, USA, 2018. [Google Scholar]
- Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametric Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
- Roberts, S.; Nowak, G. Stabilizing the lasso against cross-validation variability. Comput. Stat. Data Anal. 2014, 70, 198–211. [Google Scholar] [CrossRef]
Input Variables (mg) | Ranges and Levels | ||||||
---|---|---|---|---|---|---|---|
−β | −1 | 0 | +1 | +β | |||
X1 | Bedaquiline (BQ) | 11.1 | 13.5 | 15.8 | 18.2 | 20.5 | |
X2 | Polysorbate 80 (T80) | 11.3 | 14.6 | 17.9 | 21.1 | 24.4 | |
X3 | Polyethylene Glycol (PEG) | 24.1 | 30.8 | 37.5 | 44.2 | 50.9 | |
X4 | Lecithin (Lec) | 202.6 | 215.5 | 228.4 | 241.2 | 254.1 | |
Response Variables | Goals | Acceptable Ranges | |||||
Y1 | Polydispersity Index (PdI) | Minimize | ≤0.4 | ||||
Y2 | Z Average (PSD) | Minimize | ≤500 nm | ||||
Y3 | Zeta Potential (ZP) | Match target | −30 mV > X > + 30 mV |
Code | Actual Values of Variables |
---|---|
−β | Xmin |
−1 | [(Xmax + Xmin)/2] − [(Xmax − Xmin)/2α] |
0 | [(Xmax + Xmin)/2] |
+1 | [(Xmax + Xmin)/2] + [(Xmax − Xmin)/2α] |
+β | Xmax |
Model | R2 | Adj R2 | Predicted R2 | Precision Ratio | Std Dev. | CV (%) | AIC | BIC |
---|---|---|---|---|---|---|---|---|
Unsonicated Formulation | ||||||||
PdI | 0.1319 | −0.0584 | −0.2568 | 0.8809 | 0.16 | 31.77 | −5.97 | −3.85 |
PSD | 0.3403 | 0.2014 | −8.03 | 0.5158 | 67.68 | 14.20 | 276.4 | 278.5 |
Sonicated Formulation | ||||||||
PdI | 0.6537 | 0.5808 | −12.2718 | 0.9748 | 0.01691 | 32.60 | −45.68 | −43.55 |
PSD | 0.3403 | 0.2014 | −15.8241 | 0.00008 | 11.4569 | 28.04 | 267.16 | 269.29 |
ZP | 0.07806 | −0.1160 | −11.3790 | 0.0025 | 2.0795 | 28.83 | 185.25 | 187.38 |
Sonicated Formulation (First-Order Model) | Sonicated Formulation (Second-Order Model) | |||||
---|---|---|---|---|---|---|
Variables | PdI | Z-Average (PSD) | ZP | PdI | Z-Average (PSD) | ZP |
Main Effects | p-Value | p-Value | p-Value | p-Value | p-Value | p-Value |
Model | 0.0003 * | 0.0814 | 0.8046 | 0.0073 * | 0.0918 | 0.6389 |
BQ | 0.0001 * | 0.0091 * | 0.7264 | 0.00006 * | 0.0064 * | 0.5856 |
T80 | 0.6259 | 0.6803 | 0.7950 | 0.5000 | 0.2728 | 0.4226 |
PEG | 0.7577 | 0.6689 | 0.2744 | 0.9695 | 0.5925 | 0.4344 |
Lecithin | 0.6971 | 0.6434 | 0.8293 | 0.5088 | 0.3806 | 0.3697 |
Model | R2 | Adj R2 | Predicted R2 | Precision Ratio | Std Dev. | CV(%) | AIC | BIC |
---|---|---|---|---|---|---|---|---|
Sonicated BQ Formulation for First-order Model | ||||||||
PdI | 0.6537 | 0.5808 | −12.2718 | 0.9748 | 0.01691 | 32.60 | −45.68 | −43.55 |
PSD | 0.3403 | 0.2014 | −15.8241 | 0.00008 | 11.4569 | 28.04 | 267.16 | 269.29 |
ZP | 0.07806 | −0.1160 | −11.3790 | 0.0025 | 2.0795 | 28.83 | 185.25 | 187.38 |
Sonicated BQ Formulation for Second-order Model | ||||||||
PdI | 0.8950 | 0.7317 | 0.0111 | 8.5101 | 0.0591 | 16.36 | 18.44 | −40.42 |
PSD | 0.7907 | 0.4652 | −0.5806 | 3.7789 | 40.8672 | 22.94 | 332.38 | 273.51 |
ZP | 0.5623 | −0.1184 | −2.0822 | 1.2850 | 9.0742 | 28.87 | 260.14 | 201.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uche, C.U.; Okezue, M.A.; Amidu, I.; Byrn, S.R. Model Adequacy in Assessing the Predictive Performance of Regression Models in Pharmaceutical Product Optimization: The Bedaquiline Solid Lipid Nanoparticle Example. Sci. Pharm. 2024, 92, 64. https://doi.org/10.3390/scipharm92040064
Uche CU, Okezue MA, Amidu I, Byrn SR. Model Adequacy in Assessing the Predictive Performance of Regression Models in Pharmaceutical Product Optimization: The Bedaquiline Solid Lipid Nanoparticle Example. Scientia Pharmaceutica. 2024; 92(4):64. https://doi.org/10.3390/scipharm92040064
Chicago/Turabian StyleUche, Chidi U., Mercy A. Okezue, Ibrahim Amidu, and Stephen R. Byrn. 2024. "Model Adequacy in Assessing the Predictive Performance of Regression Models in Pharmaceutical Product Optimization: The Bedaquiline Solid Lipid Nanoparticle Example" Scientia Pharmaceutica 92, no. 4: 64. https://doi.org/10.3390/scipharm92040064
APA StyleUche, C. U., Okezue, M. A., Amidu, I., & Byrn, S. R. (2024). Model Adequacy in Assessing the Predictive Performance of Regression Models in Pharmaceutical Product Optimization: The Bedaquiline Solid Lipid Nanoparticle Example. Scientia Pharmaceutica, 92(4), 64. https://doi.org/10.3390/scipharm92040064