In Vivo Mitochondrial Function in Idiopathic and Genetic Parkinson’s Disease
Abstract
:1. Introduction
2. Resting-State 31P-MRS
3. Functional 31P-MRS
4. Limitations
5. Conclusion and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kalia, L.; Lang, A.E. Parkinson’s disease. Lancet 2015, 24, 92–98. [Google Scholar] [CrossRef]
- Ferguson, L.W.; Rajput, A.H.; Rajput, A. Early-onset vs. Late-onset Parkinson’s disease: A Clinical-pathological Study. Can. J. Neurol. Sci. 2015, 43, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, E.K.; Trinh, J.; McKenzie, M.; Bortnick, S.; Petersen, M.S.; Farrer, M.J.; Aasly, J.O. Genetic Identification in Early Onset Parkinsonism among Norwegian Patients. Mov. Disord. Clin. Pract. 2017, 4, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Davis, R.L.; Sue, C.M. Mitochondrial dysfunction in Parkinson’s disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. Neurosci. Rep. 2018, 18, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Turnbull, D.M.; Reeve, A.K. Mitochondrial dysfunction in Parkinson’s disease—Cause or consequence? Biology 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandipati, S.; Litvan, I. Environmental exposures and Parkinson’s disease. Int. J. Environ. Res. Public Health 2016, 13, 881. [Google Scholar] [CrossRef] [PubMed]
- Bury, A.G.; Pyle, A.; Elson, J.L.; Greaves, L.; Morris, C.M.; Hudson, G.; Pienaar, I.S. Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann. Neurol. 2017, 82, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Goldman, J.G.; Kelly, L.; He, Y.; Waliczek, T.; Kordower, J.H. Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease. Neurobiol. Dis. 2014, 69, 1–14. [Google Scholar] [CrossRef]
- Reeve, A.K.; Park, T.K.; Jaros, E.; Campbell, G.R.; Lax, N.Z.; Hepplewhite, P.D.; Krishnan, K.J.; Elson, J.L.; Morris, C.M.; McKeith, I.G.; et al. Relationship between mitochondria and α-synuclein: A study of single substantia nigra neurons. Arch. Neurol. 2012, 69, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Lill, C.M. Genetics of Parkinson’s disease. Mol. Cell. Probes 2016, 30, 386–396. [Google Scholar] [CrossRef]
- Scarffe, L.A.; Stevens, D.A.; Dawson, V.L.; Dawson, T.M. Parkin and PINK1: Much more than mitophagy. Trends Neurosci. 2014, 37, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.K.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Molecular Pathways of Neurodegeneration in Parkinson’s Disease. Science 2004, 302, 819–822. [Google Scholar]
- Pickrell, A.M.; Youle, R.J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisler, S.; Holmström, K.M.; Treis, A.; Skujat, D.; Weber, S.S.; Fiesel, F.C.; Kahle, P.J.; Springer, W. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 2010, 6, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Kostic, M.; Ludtmann, M.H.R.; Bading, H.; Hershfinkel, M.; Steer, E.; Chu, C.T.; Abramov, A.Y.; Sekler, I. PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons. Cell Rep. 2015, 13, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Amo, T.; Saiki, S.; Sawayama, T.; Sato, S.; Hattori, N. Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1. Neurosci. Lett. 2014, 580, 37–40. [Google Scholar] [CrossRef]
- Gan-Or, Z.; Amshalom, I.; Kilarski, L.L.; Bar-Shira, A.; Gana-Weisz, M.; Mirelman, A.; Marder, K.; Bressman, S.; Giladi, N.; Orr-Urtreger, A. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 2015, 84, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Gegg, M.E.; Schapira, A.H.V. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J. 2018, 285, 3591–3603. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ham, A.; Ma, T.C.; Kuo, S.H.; Kanter, E.; Kim, D.; Ko, H.S.; Quan, Y.; Sardi, S.P.; Li, A.; et al. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 2019, 15, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Henchcliffe, C.; Shungu, D.C.; Mao, X.; Huang, C.; Nirenberg, M.J.; Jenkins, B.G.; Beal, M.F. Multinuclear Magnetic Resonance Spectroscopy for in Vivo Assessment of Mitochondrial Dysfunction in Parkinson’s Disease. Ann. N. Y. Acad. Sci. 2008, 1147, 206–220. [Google Scholar] [CrossRef]
- Ross, B.; Bluml, S. Magnetic resonance spectroscopy of the human brain. Anat. Rec. 2001, 265, 54–84. [Google Scholar] [CrossRef]
- Hilker, R.; Pilatus, U.; Eggers, C.; Hagenah, J.; Roggendorf, J.; Baudrexel, S.; Klein, J.C.; Neumaier, B.; Fink, G.R.; Steinmetz, H.; et al. The Bioenergetic Status Relates to Dopamine Neuron Loss in Familial PD with PINK1 Mutations. PLoS ONE 2012, 7, e51308. [Google Scholar] [CrossRef] [Green Version]
- Rango, M.; Bonifati, C.; Bresolin, N. Parkinson’s disease and Brain Mitochondrial Dysfunction: A Functional Phosphorus Magnetic Resonance Spectroscopy Study. J. Cereb. Blood Flow Metab. 2006, 26, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Barbiroli, B.; Martinelli, P.; Patuelli, A.; Lodi, R.; Iotti, S.; Cortelli, P.; Montagna, P. Phosphorus magnetic resonance spectroscopy in multiple system atrophy and Parkinson’s disease. Mov. Disord. 1999, 14, 430–435. [Google Scholar] [CrossRef]
- Brockmann, K.; Hilker, R.; Pilatus, U.; Baudrexel, S.; Srulijes, K.; Magerkurth, J.; Hauser, A.-K.; Schulte, C.; Csoti, I.; Merten, C.D.; et al. GBA-associated PD. Neurodegeneration, altered membrane metabolism, and lack of energy failure. Neurology 2012, 79, 213–220. [Google Scholar] [CrossRef]
- Hattingen, E.; Magerkurth, J.; Pilatus, U.; Mozer, A.; Seifried, C.; Steinmetz, H.; Zanella, F.; Hilker, R. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 2009, 132, 3285–3297. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.T.M.; Taylor-Robinson, S.D.; Chaudhuri, K.R.; Bell, J.D.; Labbé, C.; Cunningham, V.J.; Koepp, M.J.; Hammers, A.; Morris, R.G.; Turjanski, N.; et al. Cortical dysfunction in non-demented Parkinson’s disease patients. A combined 31P-MRS and 18FDG-PET study. Brain 2000, 123, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Montagna, P.; Pierangeli, G.; Cortelli, P.; Zaniol, P.; Funicello, R.; Lugaresi, E.; Barbiroli, B. Brain oxidative metabolism in Parkinson’s disease studied by phosphorus 31 magnetic resonance spectroscopy. J. Neuroimaging 1993, 3, 225–228. [Google Scholar] [CrossRef]
- Rango, M.; Arighi, A.; Marotta, G.; Ronchi, D.; Bresolin, N. PINK1 parkinsonism and Parkinson disease: Distinguishable brain mitochondrial function and metabolomics. Mitochondrion 2013, 13, 59–61. [Google Scholar] [CrossRef]
- Weiduschat, N.; Mao, X.; Beal, M.F.; Nirenberg, M.J.; Shungu, D.C.; Henchcliffe, C. Sex differences in cerebral energy metabolism in Parkinson’s disease: A phosphorus magnetic resonance spectroscopic imaging study. Park. Relat. Disord. 2014, 20, 545–548. [Google Scholar] [CrossRef]
- Weiduschat, N.; Mao, X.; Beal, M.F.; Nirenberg, M.J.; Shungu, D.C.; Henchcliffe, C. Usefulness of Proton and Phosphorus MR Spectroscopic Imaging for Early Diagnosis of Parkinson’s Disease. J. Neuroimaging 2015, 25, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Dobson, G.P.; Veech, R.L. The Gibbs-Donnan near-equilibrium system of heart. J. Biol. Chem. 1990, 265, 20321–20334. [Google Scholar] [PubMed]
- Hu, M.T.; Taylor-Robinson, S.D.; Chaudhuri, K.R.; Bell, J.D.; Morris, R.G.; Clough, C.; Brooks, D.J.; Turjanski, N. Evidence for cortical dysfunction in clinically non-demented patients with Parkinson’s disease: A proton MR spectroscopy study. J. Neurol. Neurosurg. Psychiatry 1999, 67, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, M.F.; Ahmad, A.; Bhat, S.H.; Abu-Duhier, F.M.; Barreto, G.E.; Ashraf, G.M. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci. Biobehav. Rev. 2019, 102, 95–105. [Google Scholar] [CrossRef]
- Nilsen, J.; Brinton, R.D. Mechanism of estrogen-mediated neuroprotection: Regulation of mitochondrial calcium and Bcl-2 expression. Proc. Natl. Acad. Sci. USA 2003, 100, 2842–2847. [Google Scholar] [CrossRef] [Green Version]
- Cereda, E.; Barichella, M.; Cassani, E.; Caccialanza, R.; Pezzoli, G. Reproductive factors and clinical features of Parkinson’s disease. Park. Relat. Disord. 2013, 19, 1094–1099. [Google Scholar] [CrossRef]
- Papa, S.; Sardanelli, A.M.; Capitanio, N.; Piccoli, C. Mitochondrial respiratory dysfunction and mutations in mitochondrial DNA in PINK1 familial Parkinsonism. J. Bioenerg. Biomembr. 2009, 41, 509–516. [Google Scholar] [CrossRef]
- Prebil, M.; Jensen, J.; Zorec, R.; Kreft, M. Astrocytes and energy metabolism. Arch. Physiol. Biochem. 2011, 117, 64–69. [Google Scholar] [CrossRef]
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef]
- O’Regan, G.; Desouza, R.M.; Balestrino, R.; Schapira, A.H. Glucocerebrosidase Mutations in Parkinson Disease. J. Parkinsons. Dis. 2017, 7, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Mazzulli, J.R.; Xu, Y.H.; Sun, Y.; Knight, A.L.; McLean, P.J.; Caldwell, G.A.; Sidransky, E.; Grabowski, G.A.; Krainc, D. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011, 146, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Sakaue, H. Multifaceted roles of porin in mitochondrial protein and lipid transport. Biochem. Soc. Trans. 2019, 47, 1269–1277. [Google Scholar] [CrossRef]
- Mori, A.; Hatano, T.; Inoshita, T.; Shiba-Fukushima, K.; Koinuma, T.; Meng, H.; Kubo, S.I.; Spratt, S.; Cui, C.; Yamashita, C.; et al. Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc. Natl. Acad. Sci. USA 2019, 116, 20689–20699. [Google Scholar] [CrossRef] [Green Version]
- Zadali, R.; Ghareghozloo, E.R.; Ramezani, M.; Hassani, V.; Rafiei, Y.; Chiyaneh, S.M.; Meratan, A.A. Interactions with and Membrane Permeabilization of Brain Mitochondria by Amyloid Fibrils. J. Vis. Exp. 2019. [Google Scholar] [CrossRef]
- Rango, M.; Bozzali, M.; Prelle, A.; Scarlato, G.; Bresolin, N. Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: A phosphorus magnetic resonance spectroscopy study. J. Cereb. Blood Flow Metab. 2001, 21, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.; Raichle, M.; Mintun, M.; Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988, 241, 462–464. [Google Scholar] [CrossRef]
- Rango, M.; Piatti, M.; Di Fonzo, A.; Ardolino, G.; Airaghi, L.; Biondetti, P.; Bresolin, N. Abnormal brain temperature in early-onset Parkinson’s disease. Mov. Disord. 2016, 31, 425–426. [Google Scholar] [CrossRef]
- Rango, M.; Arighi, A.; Bonifati, C.; Bresolin, N. Increased brain temperature in Parkinson’s disease. Neuroreport 2012, 23, 129–133. [Google Scholar] [CrossRef]
Authors | Participantsa | Age at PD Onsetb | Disease Duration | PD Clinical Scalesc | Medications | 31P-MRS | Area of Interest | Main Resultsd |
---|---|---|---|---|---|---|---|---|
(Male/Femal) | (average) | (average) | Design | |||||
Barbiroli et al. [24] | 13 PD (8/5) | 55.2 ± 10 s.d. | 11.7 ± 4.9 s.d. | H&Y | L-dopa (13 PD) | Resting-state | Occipital Lobes | Pi: PD > HC |
15 MSA (12/3) | (1.5T) | PCr: MSA < PD | ||||||
16 HC (N.A.) | ||||||||
Brockmann et al. [25] | 13 GBA-PD (10/3) | 49.5 y.o. (from 28 to 65) | 5.5 (from 3 to 12) | UK Brain Bank Criteria | N.A. | Resting-state | Putamen | |
19 HC (11/8) | H&Y | (3T) | Midbrain | GPE: GBA-PD > HC | ||||
UPDRS | ||||||||
Hattingen et al. [26] | 29 PD (23/6) | N.A. | N.A. | UK Brain Bank Criteria | L-dopa (23/23) | Resting-state | Putamen | ATP: PD < HC |
19 HC (9/10) | H&Y | Dopamine Agonists (7/23) | (3T) | Midbrain | PCr: PD < HC | |||
UPDRS | ||||||||
Hilker et al. [22] | 2 PD PINK1+ HZ (0/2) | N.A. | 11.5 ± 0.7 s.d. | H&Y | L-dopa (2 PD PINK1 HZ) | Resting-state | Putamen | βATP; PCr: PINK1+ HZ > PINK1- DZ, HC |
9 PD PINK1- DZ (7/2) | UPDRS | (3T) | GPC; GPE: PINK1+ HZ > PINK1- DZ, HC | |||||
23 HC (6/17) | ||||||||
Hu et al. [27] | 10 PD (N.A.) | N.A. | 5.9 ± 3.8 s.d. | UK Brain Bank Criteria | L-dopa (10/10) | Resting-state | Temporoparietal Cortex | Bilateral Temporoparietal: |
9 HC (N.A.) | H&Y | Dopamine Agonists (4/10) | (1.5T) | Occipital Cortex | Pi/βATP: PD > HC | |||
Thalamus | Right Temporoparietal: | |||||||
Pallidus | Pi: PD > HC | |||||||
Midbrain | Thalamus, Pallidus, Midbrain: | |||||||
βATP: PD < HC | ||||||||
PME/βATP; PDE/βATP; PCr/βATP: | ||||||||
PD > HC | ||||||||
Montagna et al. [28] | 10 PD (7/3) | 55.6 ± 7.3 s.d. | 6.8 ± 4.7 s.d. | H&Y | L-dopa (10/10) | Resting-state | Frontal Lobes | Pi: PD > HC |
9 HC (9/0) | (1.5T) | Basal Grey structures | ||||||
Rango et al. [23] | 20 PD (10/10) | N.A. | 7 ± 2.5 s.d. | UK Brain Bank Criteria | L-dopa (20/20) | Functional | Visual Cortex | PCr + βATP (Recovery): PD < HC |
20 HC (10/10) | H&Y | Dopamine Agonists (6/20) | (1.5T) | |||||
Rango et al. [29] | 1 PD PINK1 DZ (0/1) | 46 | 16 | UPDRS | L-dopa (10/10) | Functional | Visual Cortex | PCr + βATP (rest): EOPD < PD; HC |
10 PD (0/10) | N.A. | N.A. | L-dopa + Dopamine Agonist (PD PINK1) | (1.5T) | PCr + βATP (activation): EOPD < PD; HC | |||
10 HC (0/10) | PCr + βATP (recovery): EOPD < PD; HC | |||||||
Weiduschat et al. [30] | 20 PD (10;10) | N.A. | N.A. | UK Brain Bank Criteria | L-dopa (4M;2F) | Resting-state | Striatum | HEP: Male PD < Female PD |
Dopamine Agonists (2M;4F) | (3T) | Temporoparietal GM | ||||||
12 HC (7;5) | UPDRS | |||||||
Weiduschat et al. [31] | 20 PD (10;10) | 55.6 ± 12.0 s.d. | 3.2 ± 1.8 s.d. | UK Brain Bank Criteria | L-dopa (3/10) | Resting-state | Striatum | No energetics difference |
15 HC | UPDRS | L-dopa + Dopamine agonists (3/10) | (3T) | Temporoparietal GM | between control and PD at | |||
H&Y | Dopa agonists (5/10) | Early Stage |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dossi, G.; Squarcina, L.; Rango, M. In Vivo Mitochondrial Function in Idiopathic and Genetic Parkinson’s Disease. Metabolites 2020, 10, 19. https://doi.org/10.3390/metabo10010019
Dossi G, Squarcina L, Rango M. In Vivo Mitochondrial Function in Idiopathic and Genetic Parkinson’s Disease. Metabolites. 2020; 10(1):19. https://doi.org/10.3390/metabo10010019
Chicago/Turabian StyleDossi, Gabriele, Letizia Squarcina, and Mario Rango. 2020. "In Vivo Mitochondrial Function in Idiopathic and Genetic Parkinson’s Disease" Metabolites 10, no. 1: 19. https://doi.org/10.3390/metabo10010019
APA StyleDossi, G., Squarcina, L., & Rango, M. (2020). In Vivo Mitochondrial Function in Idiopathic and Genetic Parkinson’s Disease. Metabolites, 10(1), 19. https://doi.org/10.3390/metabo10010019