Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Results of the Systematic Literature Search
2.3. Replication of Food-Metabolite Associations
2.4. Identification of Novel Food-Metabolite Associations
3. Discussion
3.1. Associations of Metabolites with Coffee
3.2. Association of Metabolites with Fish Intake
3.3. Association of Serum Metabolites with Chocolate Intake
3.4. Association of Serum Metabolites with Wine Intake
3.5. Association of Serum Metabolites with Alcohol Intake
3.6. Association of Serum Metabolites with Butter Intake
3.7. Association of Serum Metabolites with Poultry Intake
3.8. Food-Metabolite Associations Not Confirmed in This Study
3.9. Identification of Novel Food-Metabolite Associations
3.10. Further Aspects of the Study
3.11. Strengths and Limitations
4. Subjects and Methods
4.1. Study Design and Population
4.2. Assessment of Diet
4.3. Assessment of Other Lifestyle Variables and Definitions
4.4. Profiling of the Serum Metabolome
4.5. Literature Search on Food Group-Metabolite Associations
4.6. Statistical Analysis
4.7. Replication of Food-Metabolite Associations
4.8. Identification of Novel Food-Metabolite Associations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corella, D.; Ordovás, J.M. Biomarkers: Background, classification and guidelines for applications in nutritional epidemiology. Nutr. Hosp. 2015, 31 (Suppl. 3), 177–188. [Google Scholar] [PubMed]
- Collins, C.; McNamara, A.E.; Brennan, L. Role of metabolomics in identification of biomarkers related to food intake. Proc. Nutr. Soc. 2019, 78, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.J.; Walsh, M.; Brennan, L.; Roche, H.M.; German, B.; Van Ommen, B. Metabolomics in human nutrition: Opportunities and challenges. Am. J. Clin. Nutr. 2005, 82, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aloy, M.; Rabassa, M.; Casas-Agustench, P.; Hidalgo-Liberona, N.; Llorach, R.; Lacueva, M.C.A. Novel strategies for improving dietary exposure assessment: Multiple-data fusion is a more accurate measure than the traditional single-biomarker approach. Trends Food Sci. Technol. 2017, 69, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Jenab, M.; Slimani, N.; Bictash, M.; Ferrari, P.; Bingham, S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum. Genet. 2009, 125, 507–525. [Google Scholar] [CrossRef]
- Pallister, T.; Jennings, A.; Mohney, R.P.; Yarand, D.; Mangino, M.; Cassidy, A.; MacGregor, A.; Spector, T.D.; Menni, C. Characterizing Blood Metabolomics Profiles Associated with Self-Reported Food Intakes in Female Twins. PLoS ONE 2016, 11, e0158568. [Google Scholar] [CrossRef] [Green Version]
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.-Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 2014, 100, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Playdon, M.; Sampson, J.N.; Cross, A.J.; Sinha, R.; Guertin, K.A.; Moy, K.A.; Rothman, N.; Irwin, M.L.; Mayne, S.T.; Stolzenberg-Solomon, R.; et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Yu, B.; Alexander, D.; Steffen, L.M.; Boerwinkle, E. Human Metabolome Associates With Dietary Intake Habits Among African Americans in the Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 2014, 179, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Dragsted, L.O.; Gao, Q.; Scalbert, A.; Vergères, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Afman, L.A.; Wishart, D.S.; Lacueva, C.A.; et al. Validation of biomarkers of food intake—Critical assessment of candidate biomarkers. Genes Nutr. 2018, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Adamski, J. Metabolomics for Biomedical Research; Elsevier Science & Technology: San Diego, CA, USA, 2020; ISBN 0128127856. [Google Scholar]
- Playdon, M.C.; Joshi, A.D.; Tabung, F.K.; Cheng, S.; Henglin, M.; Kim, A.; Lin, T.; Van Roekel, E.H.; Huang, J.; Krumsiek, J.; et al. Metabolomics Analytics Workflow for Epidemiological Research: Perspectives from the Consortium of Metabolomics Studies (COMETS). Metabolites 2019, 9, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comitato, R.; Saba, A.; Turrini, A.; Arganini, C.; Virgili, F. Sex Hormones and Macronutrient Metabolism. Crit. Rev. Food Sci. Nutr. 2015, 55, 227–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.; Peters, A.; Theis, F.J.; et al. Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genet. 2011, 7, e1002215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Playdon, M.C.; Ziegler, R.G.; Sampson, J.N.; Stolzenberg-Solomon, R.; Thompson, H.J.; Irwin, M.L.; Mayne, S.T.; Hoover, R.N.; Moore, S.C. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017, 106, 637–649. [Google Scholar] [CrossRef]
- Wang, Y.; Gapstur, S.M.; Carter, B.D.; Hartman, T.J.; Stevens, V.L.; Gaudet, M.M.; McCullough, M.L. Untargeted Metabolomics Identifies Novel Potential Biomarkers of Habitual Food Intake in a Cross-Sectional Study of Postmenopausal Women. J. Nutr. 2018, 148, 932–943. [Google Scholar] [CrossRef]
- Playdon, M.C.; Moore, S.C.; Derkach, A.; Reedy, J.; Subar, A.F.; Sampson, J.N.; Albanes, D.; Gu, F.; Kontto, J.; Lassale, C.; et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 2017, 105, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Guertin, K.A.; Loftfield, E.; Boca, S.M.; Sampson, J.N.; Moore, S.C.; Xiaoqin, X.; Huang, W.-Y.; Xiong, X.; Freedman, N.D.; Cross, A.J.; et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am. J. Clin. Nutr. 2015, 101, 1000–1011. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Keski-Rahkonen, P.; Robinot, N.; Assi, N.; Casagrande, C.; Jenab, M.; Ferrari, P.; Boutron-Ruault, M.; Mahamat-Saleh, Y.; Mancini, F.R.; et al. A Metabolomic Study of Biomarkers of Habitual Coffee Intake in Four European Countries. Mol. Nutr. Food Res. 2019, 63, e1900659. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Allison, P.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Lang, R.; Dieminger, N.; Beusch, A.; Lee, Y.-M.; Dunkel, A.; Suess, B.; Skurk, T.; Wahl, A.; Hauner, H.; Hofmann, T. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal. Bioanal. Chem. 2013, 405, 8487–8503. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Erlund, I.; Michelotti, G.A.; Herder, C.; Westerhuis, J.A.; Tuomilehto, J. Metabolomic response to coffee consumption: Application to a three-stage clinical trial. J. Intern. Med. 2018, 283, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Madrid-Gambin, F.; Garcia-Aloy, M.; Andres-Lacueva, C.; Logue, C.; Gallagher, A.M.; Mack, C.; Kulling, S.E.; Gao, Q.; Praticò, G.; et al. Biomarkers of intake for coffee, tea, and sweetened beverages. Genes Nutr. 2018, 13, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niwa, T. Organic acids and the uremic syndrome: Protein metabolite hypothesis in the progression of chronic renal failure. Semin. Nephrol. 1996, 16, 167–182. [Google Scholar] [PubMed]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R.C. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 2003, 38, 391–398. [Google Scholar] [CrossRef]
- Patterson, A.C.; Metherel, A.H.; Hanning, R.M.; Stark, K.D. The percentage of DHA in erythrocytes can detect non-adherence to advice to increase EPA and DHA intakes. Br. J. Nutr. 2014, 111, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Michielsen, C.C.J.R.; Almanza-Aguilera, E.; Brouwer-Brolsma, E.M.; Urpi-Sarda, M.; Afman, L.A. Biomarkers of food intake for cocoa and liquorice (products): A systematic review. Genes Nutr. 2018, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- Beelman, R.B.; Hausman, M.S. Use of Ergothioneine as a Preservative in Foods and Beverages. Available online: http://www.freepatentsonline.com/y2013/0035361.html (accessed on 28 May 2020).
- Acton, Q.A. Sulfur Oxides—Advances in Research and Application, 2013 ed.; ScholarlyEditions: Atlanta, GA, USA, 2013; ISBN 9781481692755. [Google Scholar]
- Geyer, J.; Bakhaus, K.; Bernhardt, R.; Blaschka, C.; Dezhkam, Y.; Fietz, D.; Grosser, G.; Hartmann, K.; Hartmann, M.F.; Neunzig, J.; et al. The role of sulfated steroid hormones in reproductive processes. J. Steroid Biochem. Mol. Biol. 2017, 172, 207–221. [Google Scholar] [CrossRef]
- Dorgan, J.F.; Jung, S.; Dallal, C.M.; Zhan, M.; Stennett, C.A.; Zhang, Y.; Eckert, R.L.; Snetselaar, L.G.; Van Horn, L. Alcohol consumption and serum metabolite concentrations in young women. Cancer Causes Control. 2020, 31, 113–126. [Google Scholar] [CrossRef]
- Chung, H.; Nettleton, J.A.; Lemaitre, R.N.; Barr, R.G.; Tsai, M.Y.; Tracy, R.P.; Siscovick, D.S. Frequency and Type of Seafood Consumed Influence Plasma (n-3) Fatty Acid Concentrations. J. Nutr. 2008, 138, 2422–2427. [Google Scholar] [CrossRef]
- Gil, F.; Pla, A. Biomarkers as biological indicators of xenobiotic exposure. J. Appl. Toxicol. 2001, 21, 245–255. [Google Scholar] [CrossRef]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A New Statistical Method for Estimating the Usual Intake of Episodically Consumed Foods with Application to Their Distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, J.A.; Fillâtre, Y.; Martin, J.-F.; Lyan, B.; Pujos-Guillot, E.; Fezeu, L.; Hercberg, S.; Comte, B.; Galan, P.; Touvier, M.; et al. New Biomarkers of Coffee Consumption Identified by the Non-Targeted Metabolomic Profiling of Cohort Study Subjects. PLoS ONE 2014, 9, e93474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oluwagbemigun, K.; Foerster, J.; Watkins, C.; Fouhy, F.; Stanton, C.; Bergmann, M.M.; Boeing, H.; Nöthlings, U. Dietary Patterns Are Associated with Serum Metabolite Patterns and Their Association Is Influenced by Gut Bacteria among Older German Adults. J. Nutr. 2020, 150, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Nöthlings, U.; Krawczak, M. PopGen: Eine populationsbasierte Biobank mit Langzeitverfolgung der Kontrollkohorte. Bundesgesundheitsblatt Gesundh. Gesundh. 2012, 55, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Borggrefe, J.; Barbaresko, J.; Groth, G.; Jacobs, G.; Siegert, S.; Lieb, W.; Müller, M.J.; Bosy-Westphal, A.; Heller, M.; et al. Dietary patterns associated with magnetic resonance imaging–determined liver fat content in a general population study. Am. J. Clin. Nutr. 2014, 99, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Nöthlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Fitting Portion Sizes in a Self-Administered Food Frequency Questionnaire. J. Nutr. 2007, 137, 2781–2786. [Google Scholar] [CrossRef]
- Barbaresko, J.; Siegert, S.; Koch, M.; Aits, I.; Lieb, W.; Nikolaus, S.; Laudes, M.; Jacobs, G.; Nöthlings, U. Comparison of two exploratory dietary patterns in association with the metabolic syndrome in a Northern German population. Br. J. Nutr. 2014, 112, 1364–1372. [Google Scholar] [CrossRef]
- Ainsworth, B.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef]
- Koch, M.; Freitag-Wolf, S.; Schlesinger, S.; Borggrefe, J.; Hov, J.R.; Jensen, M.K.; Pick, J.; Markus, M.R.P.; Hopfner, T.; Jacobs, G.; et al. Serum metabolomic profiling highlights pathways associated with liver fat content in a general population sample. Eur. J. Clin. Nutr. 2017, 71, 995–1001. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Giuseppe, R.D.; Koch, M.; Nöthlings, U.; Kastenmüller, G.; Artati, A.; Adamski, J.; Jacobs, G.; Lieb, W. Metabolomics signature associated with circulating serum selenoprotein P levels. Endocrine 2019, 64, 486–495. [Google Scholar] [CrossRef] [PubMed]
- R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 16 July 2020).
Participant Characteristics | Total (n = 849) | Men (n = 485) | Women (n = 364) | p-Value |
---|---|---|---|---|
Sociodemographic and lifestyle | ||||
Age 2, yrs. | 62.2 [16.5] | 62.0 [15.3] | 62.3 [18.2] | 0.61 |
BMI 2, kg/m2 | 26.8 [5.4] | 27.1 [4.5] | 26.2 [6.8] | 0.02 |
Waist circumference 2, cm | 96.0 [16.9] | 100.0 [14.5] | 89.7 [19.0] | <0.01 |
High education 4 | 277 (32.6%) | 186 (38.4%) | 91 (25%) | <0.01 |
Full time employment 4 | 263 (31%) | 199 (41%) | 64 (17.6%) | <0.01 |
Current smokers 4 | 108 (12.7%) | 63 (13%) | 45 (12.4%) | <0.01 |
Physical activity, MET-h/week 1,3 | 100.9 (61.5) | 96.4 (64.0) | 107.1 (57.6) | 0.01 |
Prevalent diseases 4 | ||||
Hypertension | 638 (75.1%) | 386 (79.6%) | 252 (69.2%) | <0.01 |
CHD | 72 (8.5%) | 58 (12%) | 14 (3.8%) | <0.01 |
Stroke | 16 (1.9%) | 9 (1.9%) | 7 (1.9%) | 1 |
Diabetes | 101 (11.9%) | 72 (14.8%) | 29 (8%) | <0.01 |
Cancer | 137 (16.1%) | 84 (17.3%) | 53 (14.6%) | 0.29 |
Dietary intake 2, g/d | ||||
Alcohol | 8.9 [15.3] | 12.5 [18.1] | 5.3 [10.0] | <0.01 |
Butter | 7.9 [12.7] | 9.0 [16.7] | 7.0 [9.9] | <0.01 |
Chocolate | 9.0 [10.9] | 11.0 [12.0] | 9.0 [9.2] | 0.01 |
Coffee | 370.8 [477.3] | 390.3 [490.3] | 356.8 [121.4] | <0.01 |
Fish | 21.5 [29.5] | 31.4 [27.9] | 21.5 [23.4] | <0.01 |
Mushrooms | 3.7 [0.9] | 3.8 [0.9] | 3.6 [0.8] | <0.01 |
Liquor | 0.0 [1.3] | 0.0 [1.3] | 0.0 [1.3] | 0.21 |
Poultry | 11.5 [14.0] | 11.7 [13.4] | 11.3 [15.3] | 0.96 |
Red meat | 51.5 [44.7] | 68.0 [48.9] | 29.4 [25.3] | <0.01 |
Wine | 32.1 [86.6] | 37.0 [92.0] | 30.5 [85.0] | 0.12 |
Total energy intake 2, kJ/day | 8915.7 [3545.3] | 10,059.9 [3616.2] | 7751.9 [2332.4] | <0.01 |
Food Groups | Metabolites | Observational Study |
---|---|---|
Apples and pears a | Threitol b | [6,15] |
Fruit juice a | Stachydrine or proline betaine | [6,9] |
Juices a | 4-Hydroxyproline betaine/betonicine b | [8,15] |
Mushrooms | Ergothioneine | [6,16] |
Fish | X-02269 | [8,16] |
CMPF | [7,8,15,16] | |
DHA | [7,8,15,16] | |
EPA | [7,16] | |
1-Docosahexaenoyl-GPC (22:6) * | [7,16] | |
Fish and seafood a | DHA | [9,17] |
CMPF | [9,17] | |
EPA | [9,17] | |
Shellfish a | CMPF | [7,8,16,17] |
X-02269 | [8,16] | |
Nuts f | Tryptophan betaine | [8,16] |
4-Vinylphenol sulfate | [8,16] | |
Peanuts a | Tryptophan betaine | [7,16] |
4-Vinylphenol sulfate | [7,16] | |
Milk | Galactonate b | [15,16] |
Phenylacetylglycine b | [15,16] | |
Butter | Caprate 10:0 | [15,16] |
15-Methylpalmitate isobar with 2-methylpalmitate b | [6,7] | |
10-Undecenoate (11:1n1) | [6,7,16] | |
Pentadecanoate 15:0 b | [6,7] | |
Chocolate | 7-Methylxanthine | [6,16] |
Theobromine | [6,7,16] | |
Alcohol e | Ethyl glucuronide c | [7,8,16] |
5-α-Androstan-3β,17β-diol disulfate | [7,15,16] | |
4-Androsten-3β,17β-diol disulfate 1 * | [7,15] | |
α-Hydroxyisovalerate | [15,16] | |
Ergothioneine | [15,16] | |
CMPF | [15,16] | |
2,3-Dihydroxyisovalerate b | [15,16] | |
5α-Androstan-3α,17β-diol disulfate b | [15,16] | |
Liquor | Ethyl glucuronide c | [7,8,15,16] |
5α-Androstan-3α,17β-diol disulfate b | [15,16] | |
α-Hydroxyisovalerate | [15,16] | |
5α-Androstan-3β,17β-diol disulfate | [15,16] | |
Coffee d | 1,3,7-Trimethylurate | [8,9,16,18] |
1,3-Dimethylurate b | [8,16] | |
1,7-Dimethylurate | [8,9,16,18] | |
1-Methylurate | [9,16,18] | |
1-Methylxanthine | [6,7,8,9,16,18] | |
3-(3-Hydroxyphenyl)-propionate | [16,18] | |
3-Hydroxyhippurate | [16,18] | |
4-Vinylguaiacolsulfate b | [16,18] | |
3-Hydroxypyridine sulfate b | [6,16] | |
AAMU | [9,16,19] | |
3-Methyl catechol sulfate (1) | [6,16] | |
Caffeine | [8,9,16,18,19] | |
Catechol sulfate | [6,7,8,16,18,19] | |
Cinnamoylglycine | [16,18] | |
Dihydroferulic acid b | [15,16] | |
N-(2-Furoyl)-glycine | [7,8,16,18] | |
O-Methylcatechol sulfate b | [6,16] | |
Paraxanthine | [7,8,9,16,18,19] | |
Quinate b | [6,7,8,9,16,18,19] | |
Theophylline | [8,16,18,19] | |
Trigonelline N ′-methylnicotinate b | [7,8,16,18,19] | |
Cyclo(leu-pro) | [18,19] | |
Hippurate | [16,19] | |
X-12230 b | [6,16,18] | |
X-12329 b | [8,16,18] | |
X-12816 | [6,8,16,18] | |
X-14473 | [6,8,16,18] | |
X-17185 | [8,16,18] | |
Decaffeinated coffee a | 1,7-Dimethylurate | [8,16] |
Tea | Theanine b | [15,16] |
Poultry | Pyroglutamine | [6,7] |
3-Methylhistidine | [15,16] | |
Soymilk a | 4-Ethylphenylsulfate | [6,16] |
Meat f | Pyroglutamine | [6,17] |
Trans-4-hydroxyproline | [6,17] | |
Red meat | Pyroglutamine | [6,15] |
X-11381 | [6,16] | |
Wine | Scyllo-inositol b | [6,7] |
X-01911 | [6,16] | |
X-11795 | [6,16] | |
Piperine | [6,16] | |
Ethyl glucuronide b | [15,16] | |
CMPF | [15,16] | |
2,3-Dihydroxyisovalerate b | [15,16] |
Food Group | Metabolite | Subpathway | Estimate (95% CI) in % | p-Value * |
---|---|---|---|---|
Butter | undecenoate (11:1n1) | Medium chain fatty acid | 0.31 (0.06, 0.55) | 0.03 |
Poultry | 3-methylhistidine | Histidine metabolism | 1.08 (0.23, 1.93) | 0.03 |
Wine | X-11795 | unknown | 0.04 (0.02, 0.06) | <0.01 |
Food Group | Metabolites | Subpathway | Estimate (95% CI) in % | p-Value * |
---|---|---|---|---|
Coffee | paraxanthine 1 | Xanthine metabolism | 0.08 (0.04, 0.11) | 0.03 |
X-144732 2 | Unknown | 0.13 (0.07, 0.19) | 0.05 | |
Fish | EPA 1 | Polyunsaturated fatty acid | 0.68 (0.39, 0.98) | 0.40 |
X-02269 1 | Unknown | 1.12 (0.67, 1.58) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langenau, J.; Oluwagbemigun, K.; Brachem, C.; Lieb, W.; Giuseppe, R.d.; Artati, A.; Kastenmüller, G.; Weinhold, L.; Schmid, M.; Nöthlings, U. Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake. Metabolites 2020, 10, 468. https://doi.org/10.3390/metabo10110468
Langenau J, Oluwagbemigun K, Brachem C, Lieb W, Giuseppe Rd, Artati A, Kastenmüller G, Weinhold L, Schmid M, Nöthlings U. Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake. Metabolites. 2020; 10(11):468. https://doi.org/10.3390/metabo10110468
Chicago/Turabian StyleLangenau, Julia, Kolade Oluwagbemigun, Christian Brachem, Wolfgang Lieb, Romina di Giuseppe, Anna Artati, Gabi Kastenmüller, Leonie Weinhold, Matthias Schmid, and Ute Nöthlings. 2020. "Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake" Metabolites 10, no. 11: 468. https://doi.org/10.3390/metabo10110468
APA StyleLangenau, J., Oluwagbemigun, K., Brachem, C., Lieb, W., Giuseppe, R. d., Artati, A., Kastenmüller, G., Weinhold, L., Schmid, M., & Nöthlings, U. (2020). Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake. Metabolites, 10(11), 468. https://doi.org/10.3390/metabo10110468