Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Results
2.1. The Concentration Changes of COMP
2.2. The Concentration Changes of YKL-40
2.3. The Concentration Changes of Adipocytokines
2.4. The Correlations between Markers of Metabolic Changes of Cartilage and Adipocytokines
3. Discussion
4. Materials and Methods
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Twilt, M.; Pradsgaard, D.; Spannow, A.H.; Horlyck, A.; Heuck, C.; Herlin, T. Joint cartilage thickness and automated determination of bone age and bone health in juvenile idiopathic arthritis. Pediatr. Rheumatol. 2017, 15, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; Samui, P.P.; Samanta, M.; Mondal, R.K.; Hazra, A.; Mandal, K.; Sabui, T.K. Ultrasound detected changes in joint cartilage thickness in juvenile idiopathic arthritis. Int. J. Rheum. Dis. 2019, 22, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Winsz-Szczotka, K.; Mencner, Ł.; Olczyk, K. Metabolism of glycosaminoglycans in the course of juvenile idiopathic arthritis. Postepy Hig. Med. Dosw. 2016, 70, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Komosińska-Vassev, K.; Jura-Półtorak, A.; Olczyk, K. Laboratory indicators of aggrecan turnover in juvenile idiopathic arthritis. Dis. Markers 2016, 2016, 7157169. [Google Scholar] [CrossRef] [Green Version]
- Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Komosińska-Vassev, K.; Wisowski, G.; Gruenpeter, A.; Lachór-Motyka, I.; Żegleń, B.; Lemski, W.; Olczyk, K. Plasma and urinary glycosaminoglycans in the course of juvenile idiopathic arthritis. Biochem. Biophys. Res. Commun. 2015, 458, 639–643. [Google Scholar] [CrossRef]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Siwiec, A.; Żegleń, B.; Olczyk, K. Circulating keratan sulfate as a marker of metabolic changes of cartilage proteoglycan in juvenile idiopathic arthritis; influence of growth factors as well as proteolytic and prooxidative agents on aggrecan alterations. Clin. Chem. Lab. Med. 2015, 53, 291–297. [Google Scholar] [CrossRef]
- Winsz-Szczotka, K.; Komosińska-Vassev, K.; Kuźnik-Trocha, K.; Gruenpeter, A.; Lachór-Motyka, I.; Olczyk, K. Influence of proteolytic-antiproteolytic enzymes and prooxidative-antioxidative factors on proteoglycan alterations in children with juvenile idiopathic arthritis. Clin. Biochem. 2014, 47, 829–834. [Google Scholar] [CrossRef]
- Georgiev, T.; Ivanova, M.; Kopchev, A.; Velikova, T.; Miloshov, A.; Kurteva, E.; Yuzeir, K.; Penkov, M.; Kabakchieva, P.; Rashkov, R.; et al. Cartilage oligomeric protein, matrix metalloproteinase-3, and Coll2-1 as serum biomarkers in knee osteoarthritis: A cross-sectional study. Rheumatol. Int. 2017, 38, 821–830. [Google Scholar] [CrossRef]
- Tseng, S.; Reddi, A.H.; Di Cesare, P.E. Cartilage oligomeric matrix protein (COMP): A biomarker of arthritis. Biomark. Insights 2009, 4, 33–44. [Google Scholar] [CrossRef]
- Väänänen, T.; Vuolteenaho, K.; Kautiainen, H.; Nieminen, R.; Möttönen, T.; Hannonen, P.; Korpela, M.; Kauppi, M.J.; Laiho, K.; Kaipiainen-Seppänen, O.; et al. Glycoprotein YKL-40: A potential biomarker of disease activity in rheumatoid arthritis during intensive treatment with csDMARDs and infliximab. Evidence from the randomised controlled NEO-RACo trial. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Väänänen, T.; Koskinen, A.; Paukkeri, E.L.; Hämäläinen, M.; Moilanen, T.; Moilanen, E.; Vuolteenaho, K. YKL-40 as a novel factor associated with inflammation and catabolic mechanisms in osteoarthritic joints. Mediat. Inflamm. 2014, 2014, 215140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazakova, M.H.; Batalov, A.Z.; Mateva, N.G.; Kolarov, Z.G.; Sarafian, V.S. YKL-40 and cytokines—A new diagnostic constellation in rheumatoid arthritis? Folia Med. 2017, 59, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.; Wu, L.D. YKL-40: A potential biomarker for osteoarthritis. J. Int. Med. Res. 2009, 37, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, L.K.; Henneicke, H.; Seibel, M.J.; March, L.; Anandacoomarasmy, A. Association of adipokines and joint biomarkers with cartilage-modifying effects of weight loss in obese subjects. Osteoarthr. Cartil. 2015, 23, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakthiswary, R.; Rajalingam, S.; Hussein, H.; Sridharan, R.; Asrul, A.W. Cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis and its correlation with sonographic knee cartilage thickness and disease activity. Clin. Rheumatol. 2017, 36, 2683–2688. [Google Scholar] [CrossRef]
- Lorenzo, P.; Aspberg, A.; Saxne, T.; Önnerfjord, P. Quantification of cartilage oligomeric matrix protein (COMP) and a COMP neoepitope in synovial fluid of patients with different joint disorders by novel automated assays. Osteoarthr. Cartil. 2017, 25, 1436–1442. [Google Scholar] [CrossRef] [Green Version]
- Skiöldebrand, E.; Ekman, S.; Mattsson Hultén, L.; Svala, E.; Björkman, K.; Lindahl, A.; Lundqvist, A.; Önnerfjord, P.; Sihlbom, C.; Rüetschi, U. Cartilage oligomeric matrix protein neoepitope in the synovial fluid of horses with acute lameness: A new biomarker for the early stages of osteoarthritis. Equine. Vet. J. 2017, 49, 662–667. [Google Scholar] [CrossRef]
- Hoch, J.M.; Mattacola, C.G.; Medina McKeon, J.M.; Howard, J.S.; Lattermann, C. Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2011, 19, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Azamar-Llamas, D.; Hernández-Molina, G.; Ramos-Ávalos, B.; Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediat. Inflamm. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coles, C.A. Adipokines in healthy skeletal muscle and metabolic disease. Adv. Exp. Med. Biol. 2016, 900, 133–160. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Magnuson, A.; Fouts, J.; Foster, M.T. Adipose tissue: An endocrine organ playing a role in metabolic regulation. Horm. Mol. Biol. Clin. Investig. 2016, 26, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Perfetto, F.; Tarquini, R.; Simonini, G.; Bindi, G.; Mancuso, F.; Guiducci, S.; Matucci-Cerinic, M.; Falcini, F. Circulating leptin levels in juvenile idiopathic arthritis: A marker of nutritional status? Ann. Rheum. Dis. 2005, 64, 149–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejewska-Paszek, I.; Grochowska-Niedworok, E.; Siwiec, A.; Gruenpeter, A.; Dul, L.; Irzyniec, T. Influence of etanercept on leptin and ghrelin secretion in children with juvenile idiopathic arthritis. J. Int. Med. Res. 2017, 45, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzeska, A.; Brózik, H.; Lipińska, J.; Stańczyk, J.; Smolewska, E. Leptin concentration in serum and synovial fluid of children with juvenile idiopathic arthritis. Reumatologia 2010, 48, 37–44. [Google Scholar]
- Elwakkad, A.S.; Said, R.N.; Muhammad, S.I.; Saleh, M.T.; Elhamshary, A. Role for leptin and prolactin in human juvenile rheumatic diseases. Pak. J. Biol. Sci. 2007, 10, 984–1989. [Google Scholar]
- Tian, G.; Liang, J.N.; Wang, Z.Y.; Zhou, D. Emerging role of leptin in rheumatoid arthritis. Clin. Exp. Immunol. 2014, 177, 557–570. [Google Scholar] [CrossRef]
- Fernández-Riejos, P.; Najib, S.; Santos-Alvarez, J.; Martín-Romero, C.; Pérez-Pérez, A.; González-Yanes, C.; Sánchez-Margalet, V. Role of leptin in the activation of immune cells. Mediat. Inflamm. 2010, 2010. [Google Scholar] [CrossRef]
- Scotece, M.; Mobasheri, A. Leptin in osteoarthritis: Focus on articular cartilage and chondrocytes. Life Sci. 2015, 140, 75–78. [Google Scholar] [CrossRef]
- Hui, W.; Litherland, G.J.; Elias, M.S.; Kitson, G.I.; Cawston, T.E.; Rowan, A.D.; Young, D.A. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann. Rheum. Dis. 2012, 71, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, A.; Vuolteenaho, K.; Nieminen, R.; Moilanen, T.; Moilanen, E. Leptin enhances MMP-1, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from OA patients. Clin. Exp. Rheumatol. 2011, 29, 57–64. [Google Scholar] [PubMed]
- Bjørnhart, B.; Juul, A.; Nielsen, S.; Zak, M.; Svenningsen, P.; Müller, K. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis: Relation to growth and disease activity. J. Rheumatol. 2009, 36, 1749–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urakami, T.; Manki, A.; Inoue, T.; Oda, M.; Tanaka, H.; Morishima, T. Clinical significance of decreased serum concentration of cartilage oligomeric matrix protein in systemic juvenile idiopathic arthritis. J. Rheumatol. 2006, 33, 996–1000. [Google Scholar]
- Lewander, P.; Dahle, C.; Larsson, B.; Wetterö, J.; Skogh, T. Circulating cartilage oligomeric matrix protein in juvenile idiopathic arthritis. Scand. J. Rheumatol. 2017, 46, 194–197. [Google Scholar] [CrossRef]
- Ling, H.; Recklies, A.D. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochem. J. 2004, 380, 651–659. [Google Scholar] [CrossRef]
- Kazakova, M.; Batalov, A.; Deneva, T.; Mateva, N.; Kolarov, Z.; Sarafian, V. Relationship between sonographic parameters and YKL-40 levels in rheumatoid arthritis. Rheumatol. Int. 2013, 33, 341–346. [Google Scholar] [CrossRef]
- Baran, A.; Myśliwiec, H.; Szterling-Jaworowska, M.; Kiluk, P.; Świderska, M.; Flisiak, I. Serum YKL-40 as a potential biomarker of inflammation in psoriasis. J. Dermatolog. Treat 2018, 29, 19–23. [Google Scholar] [CrossRef]
- Gheita, T.A.; El-Gazzar, I.I.; El Shazly, R.I.; El-Din, A.M.; Abdel-Rasheed, E.; Bassyouni, R.H. Elevated serum resistin in juvenile idiopathic arthritis: Relation to categories and disease activity. J. Clin. Immunol. 2013, 33, 297–301. [Google Scholar] [CrossRef]
- Markula-Patjas, K.; Valta, H.; Pekkinen, M.; Andersson, S.; Aalto, K.; Lahdenne, P.; Viljakainen, H.; Mäkitie, O. Body composition and adipokines in patients with juvenile idiopathic arthritis and systemic glucocorticoids. Clin. Exp. Rheumatol. 2015, 33, 924–930. [Google Scholar]
- Ilisson, J.; Zagura, M.; Zilmer, K.; Salum, E.; Heilman, K.; Piir, A.; Tillmann, V.; Kals, J.; Zilmer, M.; Pruunsild, C. Increased carotid artery intima-media thickness and myeloperoxidase level in children with newly diagnosed juvenile idiopathic arthritis. Arthritis Res. Ther. 2015, 17, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Luo, S.; Li, Z. Multifaceted roles of adiponectin in rheumatoid arthritis. Int. Immunopharmacol. 2015, 28, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Olczyk-Wrochna, K.; Wisłowska, M. Adiponectin in rheumatoid arthritis. Reumatologia 2008, 46, 245–247. [Google Scholar]
- Huang, C.Y.; Lee, C.Y.; Chen, M.Y.; Tsai, H.C.; Hsu, H.C.; Tang, C.H. Adiponectin increases BMP-2 expression in osteoblasts via AdipoR receptor signaling pathway. J. Cell. Physiol. 2010, 224, 475–483. [Google Scholar] [CrossRef]
- Challa, T.D.; Rais, Y.; Ornan, E.M. Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol. Cell. Endocrinol. 2010, 323, 282–291. [Google Scholar] [CrossRef]
- Chen, T.H.; Chen, L.; Hsieh, M.S.; Chang, C.P.; Chou, D.T.; Tsai, S.H. Evidence for a protective role for adiponectin in osteoarthritis. Biochim. Biophys. Acta 2006, 1762, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Li, B.T.; Zhang, F.Z.; Xu, T.S.; Ding, R.; Li, P. Increasing production of matrix metalloproteinases, tumor necrosis factor-α, vascular endothelial growth factor and prostaglandin E2 in rheumatoid arthritis synovial fibroblasts by different adiponectin isoforms in a concentration-dependent manner. Cell. Mol. Biol. 2015, 61, 27–32. [Google Scholar]
- Kusunoki, N.; Kitahara, K.; Kojima, F.; Tanaka, N.; Kaneko, K.; Endo, H.; Suguro, T.; Kawai, S. Adiponectin stimulates prostaglandin E(2) production in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2010, 62, 1641–1649. [Google Scholar] [CrossRef]
- Conde, J.; Scotece, M.; López, V.; Gómez, R.; Lago, F.; Pino, J.; Gómez-Reino, J.J.; Gualillo, O. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
Parameter | Control Subjects (n = 45) | Untreated JIA Patients (n = 96) | JIA Patients after Treatment | |
---|---|---|---|---|
Inactive Disease (n = 30) | Active Disease n = 66 | |||
COMP (µg/mL) YKL-40 (µg/L) * | 0.57 (0.39–0.68) 82.57 ± 19.41 | 0.41 (0.25–0.58) a 169.16 ± 41.25 b | 0.56 (0.37–0.77) c 98.56 ± 36.97 a,c | 0.42 (0.38–0.48) a,f 160.10 ± 54.88 b,f |
Leptin (ng/mL) | 7.33 (4.43–11.84) | 4.90 (3.52–7.90) a | 7.11 (4.74–10.10) d | 4.55 (1.44–5.50) b,f |
Adiponectin (µg/mL) * | 19.37 ± 6.25 | 22.25 ± 3.87 a | 19.88 ± 4.95 c | 26.48 ± 10.94 a,f |
Resistin (ng/mL) | 4.17 (3.69–4.83) | 4.91 (3.96–6.77) a | 3.97 (2.87–4.93) e | 4.41 (2.37–5.89) |
Parameter | Leptin r (p) | Adiponectin r (p) | Resistin r (p) | BMI r (p) | CRP r (p) | ESR r (p) |
---|---|---|---|---|---|---|
Serum COMP | ||||||
Untreated JIA patients (n = 96) | 0.48 (0.048) | −0.42 (0.024) | −0.32 (NS) | −0,49 (0.03) | 0.15 (NS) | −0.17 (NS) |
JIA patients after treatment | ||||||
inactive disease (n = 30) | 0.06 (NS) | 0.004 (NS) | −0.13 (NS) | 0.02 (NS) | −0.20 (NS) | −0.18 (NS) |
active disease (n = 66) | 0.35 (NS) | −0.64 (0.01) | 0.25 (NS) | −0,18 (NS) | 0.34 (NS) | 0.09 (NS) |
Serum YKL-40 | ||||||
Untreated JIA patients (n = 96) | −0.49 (0.004) | 0.52 (0.01) | 0.21 (NS) | 0.50 (0.014) | 0.68 (0.0001) | 0.55 (0.002) |
JIA patients after treatment | ||||||
inactive disease (n = 30) | −0.36 (0.031) | 0.05 (NS) | −0.06 (NS) | 0.34 (NS) | 0.26 (NS) | 0.06 (NS) |
active disease (n = 66) | −0.56 (0.006) | 0.38 (0.026) | 0.48 (NS) | 0.42 (0.031) | 0.60 (0.004) | 0.52 (0.009) |
Parameter | Control Subjects (n = 45) | Untreated JIA Patients (n = 96) | JIA Patients after Treatment | |
---|---|---|---|---|
Inactive Disease (n = 30) | Active Disease (n = 66) | |||
Age (years) | 8.25 ± 2.03 | 8.23 ± 3.48 | 8.71 ± 3.70 | 7.95 ± 2.51 |
Sex, female/male | 34/11 | 77/19 | 19/11 | 58/8 |
JADAS-27 | - | 18 ± 8.66 | 4 ± 2.48 b | 15 ± 4.57 |
BMI (kg/m2) | 18.34 ± 2.12 | 16.18 ± 2.14 a | 18.02 ± 3.55 b | 16.67 ± 3.12 a |
WBC (103/l) | 7.85 ± 2.34 | 14.66 ± 4.59 a | 6.45 ± 2.70 | 9,72 ± 2,18 b |
RBC (106/l) | 4.75 ± 0.32 | 4.26 ± 0.42 | 4.62 ± 0.36 | 4,02 ± 0,33 a |
Hb (g/dl) | 14.08 ± 0.74 | 11.25 ± 1.78 a | 12.94 ± 1.53 a,b | 12,02 ± 1,27 a,b |
Ht (%) | 40.68 ± 3.26 | 35.67 ± 3.52 a | 37.22 ± 7.51 a,b | 37,19 ± 3,57 a,b |
PLT (103/l) | 284.42 ± 68.22 | 398.26 ± 111.87 a | 359.26 ± 80.06 b | 344,32 ± 70,15 |
Total cholesterol (mM) | 4.32 ± 0.84 | 4.69 ± 1.39 a | 4.27 ± 1.55 b | 4.48 ± 0.69 |
Glucose (mM) | 4.21 ± 0.38 | 4.18 ± 1.26 | 4.44 ± 0.56 b | 4.51 ± 0.93 b |
Creatinine (µM) | 61.42 ± 12.45 | 77.58 ± 9.21 a | 64.35 ± 14.57 a,b | 82.58 ± 1.11 a,b |
CRP (mg/l) | 1.20 ± 1.39 | 19.66 ± 21.68 a | 3.57 ± 0.62 b | 12,47 ± 16,88 a,c |
ESR (mm/h) | 9.22 ± 7.41 | 41.66 ± 22.04 a | 12.01 ± 5.15 b | 24,95 ± 15,89 a,c |
ANA | - | 57% (positive) | 57% (positive) | 57% (positive) |
RF | - | 100% (negative) | 100% (negative) | 100% (negative) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winsz-Szczotka, K.; Kuźnik-Trocha, K.; Gruenpeter, A.; Wojdas, M.; Dąbkowska, K.; Olczyk, K. Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis. Metabolites 2020, 10, 61. https://doi.org/10.3390/metabo10020061
Winsz-Szczotka K, Kuźnik-Trocha K, Gruenpeter A, Wojdas M, Dąbkowska K, Olczyk K. Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis. Metabolites. 2020; 10(2):61. https://doi.org/10.3390/metabo10020061
Chicago/Turabian StyleWinsz-Szczotka, Katarzyna, Kornelia Kuźnik-Trocha, Anna Gruenpeter, Magdalena Wojdas, Klaudia Dąbkowska, and Krystyna Olczyk. 2020. "Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis" Metabolites 10, no. 2: 61. https://doi.org/10.3390/metabo10020061
APA StyleWinsz-Szczotka, K., Kuźnik-Trocha, K., Gruenpeter, A., Wojdas, M., Dąbkowska, K., & Olczyk, K. (2020). Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis. Metabolites, 10(2), 61. https://doi.org/10.3390/metabo10020061