Exploring Perinatal Asphyxia by Metabolomics
Abstract
:1. Introduction
1.1. Pathophysiology of Perinatal HIE
1.2. Therapeutic Strategies for HIE
1.3. Looking for Biomarkers
2. Results and Discussion
2.1. Animal Models
2.2. Human Studies
2.3. Limits and Pitfalls
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarnat, H.B.; Sarnat, M.S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol. 1976, 33, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.D.; Raju, T.; Edwards, A.D.; Azzopardi, V.B.; Bose, C.L.; Clark, R.H.; Ferriero, D.M.; Guillet, R.; Gunn, A.J.; Hagberg, H.; et al. Hypothermia and other treatment options for neonatal encephalopathy: An executive summary of the Eunice Kennedy Shriver NICHD workshop. J. Pediatr. 2011, 159, 851–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas-Escobar, M.; Weiss, M.D. Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr. 2015, 169, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, J.D.; Sargentoni, J.; Azzopardi, D.; Manji, K.; Cowan, F.M.; Rutherford, M.A.; Cox, I.J.; Bell, J.D.; Bryant, D.J.; Edwards, A.D. Cerebral metabolism within 18 hours of birth asphyxia: A proton magnetic resonance spectroscopy study. Pediatr. Res. 1996, 39, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, M.V.; Ishida, A.; Ishida, W.N.; Matsushita, H.B.; Nishimura, A.; Tsuji, M. Plasticity and injury in the developing brain. Brain Dev. 2009, 31, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferriero, D.M. Neonatal brain injury. N. Engl. J. Med. 2004, 351, 1985–1995. [Google Scholar] [CrossRef]
- Gluckmann, P.D.; Wyatt, J.S.; Azzopardi, D.; Ballard, R.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; Whitelaw, A.; et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 2005, 365, 663–670. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. National Institute of Child Health and Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef]
- Azzopardi, D.V.; Strohm, B.; Edwards, A.D.; Dyet, L.; Halliday, H.L.; Juszczak, E.; Kapellou, O.; Levene, M.; Marlow, N.; Porter, E.; et al. TOBY Study Group. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 2009, 361, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.H.; Cheng, G.Q.; Shao, X.M.; Liu, X.Z.; Shan, R.B.; Zhuang, D.Y.; Zhou, C.L.; Du, L.Z.; Cao, Y.; Yang, Q.; et al. China Study Group. Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: A multicentre randomized controlled trial in China. J. Pediatr. 2010, 157, 367–372. [Google Scholar] [CrossRef]
- Simbruner, G.; Mittal, R.A.; Rohlmann, F.; Muche, R. neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: Outcomes of neo.nEURO.network RCT. Pediatrics 2010, 126, e771–e778. [Google Scholar] [CrossRef] [PubMed]
- Roka, A.; Azzopardi, D. Therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. Early Hum. Dev. 2010, 86, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zuo, Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology 2004, 101, 695–703. [Google Scholar] [CrossRef]
- McAuliffe, J.J.; Loepke, A.W.; Miles, L.; Joseph, B.; Hughes, E.; Vorhees, C.V. Desflurane, isoflurane, and sevoflurane provide limited neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. Anesthesiology 2009, 111, 533–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spandou, E.; Papoutsopoulou, S.; Soubasi, V.; Karkavelas, G.; Simeonidou, C.; Kremenopoulos, G.; Guiba-Tziampiri, O. Hypoxia-ischemia affects erythropoietin and erythropoietin receptor expression pattern in the neonatal rat brain. Brain Res. 2004, 1021, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Gunnarson, E.; Song, Y.; Kowalewsky, J.M.; Brismar, H.; Brines, M.; Cerami, A.; Andersson, U.; Zelenina, M.; Aperia, A. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proc. Natl. Acad. Sci. USA 2009, 106, 1602–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spandou, E.; Papadopoulou, Z.; Soubasi, V.; Karkavelas, G.; Simeonidou, C.; Pazaiti, A.; Guiba-Tziampiri, O. Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res. 2005, 1045, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Kang, W.; Xu, F.; Cheng, X.; Zhang, Z.; Jia, L.; Ji, L.; Guo, X.; Xiong, H.; Simbruner, G.; et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009, 124, e218–e226. [Google Scholar] [CrossRef]
- Nabetani, M.; Shintaku, H.; Hamazaki, T. Future perspectives of cell therapy for neonatal hypoxic-ischemic encephalopathy. Pediatr. Res. 2018, 83, 356–363. [Google Scholar] [CrossRef]
- Gonzalez, F.F. Neuroprotection strategies for term encephalopathy. Semin. Pediatr. Neurol. 2019, 32, 100773. [Google Scholar] [CrossRef]
- Murray, D.M. Biomarkers in neonatal hypoxic-ischemic encephalopathy—Review of the literature to date and future directions for research. In Handbook of Clinical Neurology; de Vries, L.S., Glass, H.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 162, pp. 281–293. [Google Scholar]
- Graham, E.M.; Everett, A.D.; Delpech, J.-C.; Northington, F.J. Blood biomarkers for evaluation of perinatal encephalopathy—State of the art. Curr. Opin. Pediatr. 2018, 30, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Yang, Q.; Wei, H.; Dong, W.; Fan, Y.; Hua, Z. Prognostic value of clinical tests in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: A systematic review and meta-analysis. Front. Neurol. 2020, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, D.; Kelly, L.A.; Zareen, Z.; Nolan, B.; Murphy, J.; Boylan, G.; Donoghue, V.; Molloy, E.J. Coagulation profiles are associated with early clinical outcomes in neonatal encephalopathy. Front. Pediatr. 2019, 7, 399. [Google Scholar] [CrossRef] [PubMed]
- Van Cappelen Van Walsum, A.M.; Jongsma, H.W.; Wevers, R.A.; Nijhuis, J.G.; Crevels, J.; Engelke, U.F.H.; Moolenaar, S.H.; Oeseburg, B.; Nijland, R. Hypoxia in fetal lambs: A study with 1H-NMR spectroscopy of cerebrospinal fluid. Pediatr. Res. 2001, 49, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Litt, L.; Segal, M.R.; Kelly, M.J.; Yoshihara, H.A.; James, T.L. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen—Glucose deprivation in a neonatal brain slice model of asphyxia. J. Cereb. Blood Flow Metab. 2011, 31, 547–559. [Google Scholar] [CrossRef]
- Liu, J.; Litt, L.; Pelton, J.G.; Segal, M.; Kelly, M.J.S.; Kim, M.; James, T.M. 1H/13C-NMR metabolomics in a neonatal rat brain slice model of early and late mild hypothermia treatments of asphyxia. FASEB J. 2012, 26, 1151. [Google Scholar]
- Liu, J.; Segal, M.R.; Kelly, M.J.S.; Pelton, J.G.; Kim, M.; James, T.M.; Litt, L. 13C NMR metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen–glucose deprivation. Anesthesiology 2013, 119, 1120–1136. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sheldon, R.A.; Segal, M.R.; Kelly, M.J.S.; Pelton, J.G.; Feriero, D.M.; James, T.L.; Litt, L. 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia–ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatr. Res. 2013, 74, 170–179. [Google Scholar] [CrossRef]
- Solberg, R.; Enot, D.; Deigner, H.P.; Koal, T.; Scholl-Bürgi, S.; Saugstad, O.D.; Keller, M. Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS ONE 2010, 5, e9606. [Google Scholar] [CrossRef]
- Solberg, R.; Kuligowski, J.; Pankratov, L.; Escobar, J.; Quintás, G.; Lliso, I.; Sánchez-Illana, Á.; Saugstad, O.D.; Vento, M. Changes of the plasma metabolome of newly born piglets subjected to postnatal hypoxia and resuscitation with air. Pediatr. Res. 2016, 80, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Kuligowski, J.; Solberg, R.; Sánchez-Illana, Á.; Pankratov, L.; Parra-Llorca, A.; Quintás, G.; Saugstad, O.D.; Vento, M. Plasma metabolite score correlates with hypoxia time in a newly born piglet model for asphyxia. Redox Biol. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Illana, Á.; Solberg, R.; Lliso, I.; Pankratov, L.; Quintás, G.; Saugstad, O.D.; Vento, M.; Kuligowski, J. Assessment of phospholipid synthesis related biomarkers for perinatal asphyxia: A piglet study. Sci. Rep. 2017, 7, 40315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solberg, R.; Escobar, J.; Arduini, A.; Torres-Cuevas, I.; Lahoz, A.; Sastre, J.; Saugstad, O.D.; Vento, M.; Kuligowski, J.; Quintás, G. Metabolomic analysis of the effect of postnatal hypoxia on the retina in a newly born piglet model. PLoS ONE 2013, 8, e66540. [Google Scholar] [CrossRef] [PubMed]
- Arduini, A.; Escobar, J.; Vento, M.; Escrig, R.; Quintás, G.; Sastre, J.; Saugstad, O.D.; Solberg, R. Metabolic adaptation and neuroprotection differ in the retina and choroid in a piglet model of acute postnatal hypoxia. Pediatr. Res. 2014, 76, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atzori, L.; Xanthos, T.; Barberini, L.; Antonucci, R.; Murgia, F.; Lussu, M.; Aroni, F.; Varsami, M.; Papalois, A.; Lai, A.; et al. A metabolomic approach in an experimental model of hypoxia- reoxygenation in newborn piglets: Urine predicts outcome. J. Matern. Fetal Neonatal Med. 2010, 23, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Murgia, F.; Noto, A.; Iacovidou, N.; Xanthos, T.; Lussu, M.; Atzori, L.; Barberini, L.; Finco, G.; D’Aloja, E.; Fanos, V. Is the quickness of resuscitation after hypoxia influenced by the oxygen concentration? Metabolomics in piglets resuscitated with different oxygen concentrations. J. Pediatr. Neonat. Individual. Med 2013, 2, e020233. [Google Scholar]
- Fanos, V.; Noto, A.; Xanthos, T.; Lussu, M.; Murgia, F.; Barberini, L.; Finco, G.; D’Aloja, E.; Papalois, A.; Iacovidou, N.; et al. Metabolomics network characterization of resuscitation after normocapnic hypoxia in a newborn piglet model supports the hypothesis that room air is better. BioMed Res. Int. 2014, 2014, 731620. [Google Scholar] [CrossRef]
- Skappak, C.; Regush, S.; Cheung, P.-Y.; Adamko, D.J. Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling. PLoS ONE 2013, 8, e65035. [Google Scholar] [CrossRef]
- Sachse, D.; Solevåg, A.L.; Berg, J.P.; Nakstad, B. The role of plasma and urine metabolomics in identifying new biomarkers in severe newborn asphyxia: A study of asphyxiated newborn pigs following cardiopulmonary resuscitation. PLoS ONE 2016, 11, e0161123. [Google Scholar] [CrossRef]
- Beckstrom, A.C.; Humston, E.M.; Snyder, L.R.; Synovec, R.E.; Juul, S.E. Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. J. Chromatogr. A 2011, 1218, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Chun, P.T.; McPherson, R.J.; Marney, L.C.; Zangeneh, S.Z.; Parsons, B.A.; Shojaie, A.; Synovec, R.E.; Juul, S.E. Serial plasma metabolites following hypoxic-ischemic encephalopathy in a nonhuman primate model. Dev. Neurosci. 2015, 37, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAdams, R.M.; McPherson, R.J.; Kapur, R.P.; Juul, S.E. Focal brain injury associated with a model of severe hypoxic-ischemic encephalopathy in nonhuman primates. Dev. Neurosci. 2017, 39, 107–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.Y.; Xiao, X.; Zhou, X.G.; Lau, T.K.; Rogers, M.S.; Fok, T.F.; Law, L.K.; Pang, C.P.; Wang, C.C. Metabolomic and bioinformatic analyses in asphyxiated neonates. Clin. Biochem. 2006, 39, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Longini, M.; Giglio, S.; Perrone, S.; Vivi, A.; Tassini, M.; Fanos, V.; Sarafidis, K.; Buonocore, G. Proton nuclear magnetic resonance spectroscopy of urine samples in preterm asphyctic newborn: A metabolomic approach. Clin. Chim. Acta 2015, 444, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Noto, A.; Pomero, G.; Mussap, M.; Barberini, L.; Fattuoni, C.; Palmas, F.; Dalmazzo, C.; Delogu, A.; Dessì, A.; Fanos, V.; et al. Urinary gas chromatography mass spectrometry metabolomics in asphyxiated newborns undergoing hypothermia: From the birth to the first month of life. Ann. Transl. Med. 2016, 4, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locci, E.; Noto, A.; Puddu, M.; Pomero, G.; Demontis, R.; Dalmazzo, C.; Delogu, A.; Fanos, V.; d’Aloja, E.; Gancia, P. A longitudinal 1H-NMR metabolomics analysis of urine from newborns with hypoxic-ischemic encephalopathy undergoing hypothermia therapy. Clinical and medical legal insights. PLoS ONE 2018, 13, e0194267. [Google Scholar] [CrossRef] [Green Version]
- Walsh, B.H.; Broadhurst, D.I.; Mandal, R.; Wishart, D.S.; Boylan, G.B.; Kenny, L.C.; Murray, D.M. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS ONE 2012, 7, e50520. [Google Scholar] [CrossRef] [Green Version]
- Reinke, S.N.; Walsh, B.H.; Boylan, G.B.; Sykes, B.D.; Kenny, L.C.; Murray, D.M.; Broadhurst, D.I. 1H NMR derived metabolomic profile of neonatal asphyxia in umbilical cord serum: Implications for hypoxic ischemic encephalopathy. J. Prot. Res. 2013, 12, 4230–4239. [Google Scholar] [CrossRef]
- Ahearne, C.E.; Denihan, N.M.; Walsh, B.H.; Reinke, S.N.; Kenny, L.C.; Boylan, G.B.; Broadhurst, D.I.; Murray, D.M. Early cord metabolite index and outcome in perinatal asphyxia and hypoxic-ischaemic encephalopathy. Neonatology 2016, 110, 296–302. [Google Scholar] [CrossRef]
- Sànchez-Illana, Á.; Nuñez-Ramiro, A.; Cernada, M.; Parra-Llorca, A.; Valverde, E.; Blanco, D.; Moral-Pumarega, M.T.; Cabañas, F.; Boix, H.; Pavon, A.; et al. Evolution of energy related metabolites in plasma from newborns with hypoxic-ischemic encephalopathy during hypothermia treatment. Sci. Rep. 2017, 7, 17039. [Google Scholar] [CrossRef]
- El-Farghali, O.G.; El-Chimi, M.S.; El-Abd, H.S.; El-Desouky, E. Amino acid and acylcarnitine profiles in perinatal asphyxia: A case-control study. J. Matern. Fetal Neonatal Med. 2018, 31, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Ferriero, D.M.; Bonifacio, S.L. The search continues for the elusive biomarkers of neonatal brain injury. J. Pediatr. 2014, 164, 438–440. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, S.; Ruhfus, M.; Rüdiger, M.; Sabir, H.; German Neonatal Hypothermia Network. Hospital survey showed wide variations in therapeutic hypothermia for neonantes in Germany. Acta Paediatr. 2020, 109, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Varvarousis, D.; Xanthos, T.; Ferino, G.; Noto, A.; Iacovidou, N.; Mura, M.; Scano, P.; Chalkias, A.; Papalois, A.; De-Giorgio, F.; et al. Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci. Rep. 2017, 7, 16575. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.T.; Miller, J.H.; Day, M.M.; Munger, J.C.; Brookes, P.S. Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity. Cell Rep. 2018, 23, 2617–2628. [Google Scholar] [CrossRef] [Green Version]
Study | Population | Groups | Animal | Sample | Method | Biomarkers Findings |
---|---|---|---|---|---|---|
Van Cappellen Van Walsum (2001) [25] | 23 | Severe hypoxia vs. controls | Lamb | CSF | 1H NMR | ↑ Lactate, hypoxanthine, alanine, 3-hydroxybutyrate, choline, phenylalanine, tyrosine, lysine, BCAA ↓ Glucose |
Mild hypoxia vs. controls | ↑ Lactate, hypoxanthine, alanine, phenylalanine, tyrosine, lysine, BCAA | |||||
Liu (2011) [26] | 10 | Hypothermic treatment vs. normothermic treatment | Rat | Brain tissue slices | 1H NMR 31P NMR | ↑ ATP, ADP, phosphocreatine, N-acetylaspartate, glutamate, taurine ↓ Acetate, adenine, alanine, choline, isoleucine, lactate, leucine, tyrosine, valine, inosine, arginine |
Liu (2012, 2013) [27,28] | 10 | Hypothermic treatment vs. normothermic treatment | Rat | Brain tissue slices | 1H NMR 13C NMR 31P NMR | ↑ Taurine, phosphocreatine, glutamine |
Liu (2013) [29] | 10 | Hypoxia vs. other treatments | Mice | Brain tissue | 1H NMR | ↑ Alanine, ADP, choline, lactate, succinate, valine, γ-aminobutyrate, isoleucine ↓ ATP, phosphocreatine, phosphocholine, malate, aspartate, taurine, N-acetylaspartate |
Hypothermic treatment vs. other treatments | ↑ Taurine, histidine, malate, ascorbate ↓ Fumarate, succinate, glutamine, isoleucine, N-acetylaspartylglutamate, acetate, formate | |||||
Solberg (2010) [30] | 33 | Hypoxia vs. baseline | Piglet | Plasma | FIA-MS/MS LC-MS/MS | ↑ Fumarate, succinate, lactate, α-ketoglutarate, long-chain acylcarnitines, alanine, BCAA ↓ Glutamate, citrulline, free carnitine, decadienyl-L-carnitine |
Reoxygenation vs. hypoxia | ↑ Glutamate, citrulline ↓ Fumarate, succinate, lactate, α-ketoglutarate, long-chain acylcarnitines, lysine, leucine, isoleucine | |||||
Duration of hypoxia | ↑ Alanine/BCAA, glycine/BCAA | |||||
Solberg (2016) [31] | 32 | Hypoxia vs. controls | Piglet | Plasma | LC-TOFMS | ↑ Choline, hypoxanthine, 6,8-dihydroxypurine, cytidine, uridine, glycocholic acid, guanine, uric acid, inosine, BCAA, long chain acylcarnitines, glutamine |
Reoxygenation (room air) | Return to baseline levels | |||||
Kuligowski (2017) [32] | 32 | Duration of hypoxia | Piglet | Plasma | LC-TOFMS | Score index based on choline, 6,8-dihydroxypurine and hypoxanthine compared to lactate |
Sánchez-Illana (2017) [33] | 32 | Hypoxia vs. controls | Piglet | Plasma | LC-MS/MS | ↑ Choline, cytidine, uridine, lactate |
Reoxygenation vs. controls | ↓ Choline, cytidine, uridine | |||||
Solberg (2013) [34] | 10 | Hypoxia vs. controls | Piglet | Retinal tissue | UPLC-QTOF-MS UPLC-MS/MS | ↑ Cytidine diphosphate-choline, pyroglutamic acid, GSSG ↓ Cytidine diphosphate-diacylglycerol |
Arduini (2014) [35] | 10 | Hypoxia in retina vs. controls | Piglet | Retinal and choroid tissues | UPLC-MS/MS | ↓ Glucose-6P, pyruvate, isocitrate, α-ketoglutarate, malate |
Hypoxia in choroid vs. controls | ↑ Lactate | |||||
Atzori (2010) [36] | 40 | Baseline vs. resuscitation with different oxygen concentration | Piglet | Urine | 1H NMR | Urea, malonate, creatinine, methylguanidine and hydroxyisobutyrate |
Murgia (2013) [37] | 40 | Resuscitation with lower oxygen concentration vs. resuscitation with higher oxygen concentration | Piglet | Urine | 1H NMR | ↑ Acetoacetate, alanine, succinate, dimethylamine, methanol, N-phenylacetylglycine, sarcosine ↓ Glucose |
Fanos (2014) [38] | 40 | Reoxygenation at 21% oxygen vs. baseline | Piglet | Urine | 1H NMR | ↑ Glucose, alanine, lactate, 3-hydroxymethyl glutarate, succinate, malonate ↓ Creatinine, sarcosine, glutamine, acetoacetate, phenylalanine, hippurate, trimethylamine, pyruvate |
Reoxygenation at 18/21% oxygen vs. baseline | ↑ Glucose, lactate, alanine, glycerate, pyruvate, malonate, glycine, succinate, 3-methyladenine, acetylglycine, glutaconic acid, 4-hydroxyphenyl pyruvate, 3-hydroxymethyl glutarate | |||||
Reoxygenation at 40/100% oxygen vs. baseline | ↑ Creatinine, urea, citrate, tartrate, ethanol, glucose, indoxyl sulfate | |||||
Skappak (2013) [39] | 32 | Hypoxia vs. controls | Piglet | Urine | 1H NMR | ↑ 1-Methylnicotinamide, 2-oxoglutarate, alanine, asparagine, betaine, citrate, creatine, fumarate, lactate, N-acetylglycine, N-carbamoyl-β-alanine, valine ↓ Hippurate |
Sachse (2016) [40] | 125 | 2 h after ROSC vs. baseline | Piglet | Plasma | 1H NMR | ↑ Succinate, fumarate, pyruvate, malate, lactate, glucose, choline, creatinine, hypoxanthine, acetate, alanine, glutamine, glycine, myoinositol |
4 h vs. 2 h after ROSC | ↑ Choline, creatinine, acetate ↓ Succinate, fumarate, pyruvate, lactate, glucose, hypoxanthine, alanine, glycine | |||||
2 h after ROSC vs. baseline | Urine | ↑ Succinate, fumarate, lactate, glucose, choline, creatinine, hypoxanthine, alanine, glycine, leucine, valine ↓ Creatinine, formate, 3-hydroxyisovalerate | ||||
4 h vs. 2 hours h ROSC | ↑ Glucose, alanine, leucine, valine ↓ Fumarate, formate, creatinine | |||||
Beckstrom (2011) [41] | 25 | Post-hypoxia vs. pre-hypoxia | Macaque | Cord blood plasma | GC×GC-TOFMS | ↑ Succinate, malate, lactate, glutamate, 9H-purine, glycerol, glucose-1P, arachidonate, leucine, creatinine, fructose, myoinositol, butanoate, pantothenate |
Hypoxia vs. sham group | ↑ Succinate, malate, lactate, glycerol, arachidonate, creatinine, fructose, glucose-1P, butanoate, pantothenate | |||||
Chun (2015) [42] | 33 | TH/TH+EPO (different time points) vs. untreated | Macaque | Cord blood plasma | GC×GC-TOFMS | Aminomalonate, arachidonate, butanoate, citrate, fumarate, glutamate, lactate, malate, maltose, myoinositol, propanoate, succinate |
McAdams (2017) [43] | 4 | After resuscitation vs. baseline | Macaque | Cord blood plasma | GC×GC-TOFMS | ↑ Arachidonate, fumarate, succinate, propanoate, myoinositol |
24 h after resuscitation vs. baseline | ↑ Myoinositol, glutamate, choline, glycine, serine, oleate, erytro-pentonate |
Reference | Population | Sample Groups | Biofluid | Method | Biomarkers Findings |
---|---|---|---|---|---|
Chu (2006) [44] | 37 | PA (with HIE or PND) vs. PA (without HIE) and controls | Urine | GC-MS | ↑ Ethylmalonate, 3-hydroxy-3-methylglutarate, 2-hydroxy-glutarate, 2-oxo-glutarate |
PA (without HIE) vs. PA (with HIE or PND) and controls | ↑ Glutarate, methylmalonate, 3-hydroxybutyrate, orotate | ||||
Longini (2015) [45] | 14 | PA vs. controls | Urine | 1H NMR | ↑ Lactate, glucose, trimethylamine-N-oxide, threonine and 3-hydroxyisovalerate ↓ Acetate, succinate, dimethylamine, citrate, dimethylglycine, creatine, creatinine, betaine, cis-aconitate, urea, formate |
Noto (2016) [46] | 12 | Post-TH (different time points) vs. baseline | Urine | GC-MS | ↑ Lactose, citrate, galactose, 4-hydroxyproline ↓ Lactate, taurine, lysine, mannitol, oxalate, fructose, N-acetylglucosamine |
Locci (2018) [47] | 26 | HIE at birth vs. healthy controls at birth | Urine | 1H NMR | ↑ Lactate, myoinositol, betaine, taurine ↓ Citrate, acetone, dimethylamine, glutamine, succinate, pyruvate, α-ketoglutarate, N-acetyl groups, acetate, arginine |
HIE at day 3 vs. HIE at birth | ↑ Creatine/creatinine, citrate, N,N-dimethylglycine, dimethylamine, cis-aconitate, 3-aminoisobutyrate, galactose, lactose, glutamine, α-ketoglutarate, glucose, N-acetyl groups ↓ Myoinositol, betaine, 1-methyl-nicotinammide, lactate, choline/phosphocholine, taurine, arginine, hypoxanthine | ||||
HIE at day 30 vs. HIE at birth | ↑ Citrate, betaine, dimethylamine, glutamine, pyruvate, α-ketoglutarate, galactose, lactose, formate, succinate, N-acetyl groups, N,N-dimethylglycine, cis-aconitate ↓ Myoinositol, lactate, choline/phosphocholine, 1-methyl-nicotinammide, arginine, acetate, hypoxanthine | ||||
Walsh (2012) [48] | 142 | PA vs. controls | Cord blood serum | LC-MS/MS | ↑ Acylcarnitines, leucine |
HIE vs. controls | ↑ Acylcarnitines, alanine, asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine | ||||
Asphyxia vs. controls | ↑ Glycerophospholipids, taurine | ||||
Reinke (2012) [49] | 118 | PA vs. controls | Cord blood serum | 1H NMR | ↑ 3-Hydroxybutyrate, acetone, alanine, betaine, choline, creatine, creatinine, glucose, glycerol, isoleucine, lactate, leucine, myoinositol, phosphocholine, phenylalanine, pyruvate, succinate, valine |
HIE vs. controls | ↑ Methionine, alanine, choline, creatine, glycerol, isoleucine, lactate, leucine, myoinositol, phenylalanine, pyruvate, succinate, valine | ||||
Severe HIE vs. controls | ↑ Alanine, choline, creatinine, glycerol, lactate, succinate | ||||
Ahearne (2016) [50] | 36 | Severe outcome | Cord blood serum | 1H NMR | Cord blood metabolite index (succinate•glycerol/3-hydroxybutyrate•phosphocholine) > 2.4 (sensitivity 80%, specificity of 100%) |
Normal outcome | Cord blood metabolite index (succinate•glycerol/3-hydroxybutyrate•phosphocholine) < 0.13 (sensitivity 65%, specificity of 91%) | ||||
Sánchez-Illana (2017) [51] | 80 | 48 h after first dose of topiramate vs. controls | Cord blood plasma | GC-(EI)-Q-MS | ↑ Pyruvate, lactate ↓ Acetoacetate, 3-hydroxybutyrate |
From birth to 72 h after first dose of topiramate | ↑ Malate ↓ Lactate, pyruvate, 3-hydroxybutyrate | ||||
El-Farghali (2018) [52] | 65 | Asphyxia and HIE vs. controls | Cord blood dried spot | UPLC-MS | ↑ Alanine, valine, phenylalanine, leucine, methionine, C0-carnitine, C10-carnitine, C2-carnitine, C4-carnitine, C5-carnitine, C8-carnitine, C18-carnitine |
↓ Citrulline/phenylalanine, histidine, ornithine, arginine, C3-carnitine, C14-carnitine, C16-carnitine |
Metabolite | Sample | Reference |
---|---|---|
Lactate | Plasma, urine, cord blood, CSF, brain tissue, ocular tissues | [25,26,29,30,32,33,35,38,39,40,41,42,45,46,47,49,51] |
Succinate | Plasma, urine, cord blood, brain tissue | [29,30,37,38,40,41,42,43,45,47,49,50] |
Alanine | Plasma, urine, cord blood, CSF, brain tissue | [25,26,29,30,37,38,39,40,48,49,52] |
BCAA (Ile, Leu, Val) | Plasma, urine, cord blood, CSF, brain tissue | [25,26,29,30,31,39,40,41,48,49,52] |
Choline | Plasma, urine, cord blood, CSF, brain tissue | [25,26,29,31,32,33,40,43,47,49] |
Glucose | Plasma, urine, cord blood, CSF, brain tissue | [25,35,37,38,40,41,45,47,49] |
Creatinine | Plasma, urine, cord blood | [36,38,40,41,45,47,49] |
Glutamine | Plasma, urine, brain tissue | [27,28,29,31,38,40,47] |
Taurine | Urine, cord blood, brain tissue | [26,27,28,29,46,47,48] |
Citrate | Urine, cord blood | [38,39,42,45,46,47] |
Fumarate | Plasma, urine, cord blood, brain tissue | [29,30,39,40,42,43] |
Malate | Plasma, cord blood, brain tissue, ocular tissues | [29,35,40,41,42,51] |
Myoinositol | Plasma, urine, cord blood | [40,41,42,43,47,49] |
Pyruvate | Plasma, urine, cord blood, ocular tissues | [35,38,40,47,49,51] |
3-hydroxybutyrate | Plasma, urine, cord blood, CSF | [25,44,49,50,51] |
Acetate | Plasma, urine, cord blood, brain tissue | [26,29,40,45,47] |
Glutamate | Plasma, urine, brain tissue | [26,30,41,42,43] |
Hypoxanthine | Plasma, cord blood, CSF | [25,31,32,40,47] |
Phenylalanine | Urine, cord blood, CSF | [25,38,48,49,52] |
Acylcarnitines | Plasma, cord blood | [30,31,48,52] |
Betaine | Urine, cord blood | [39,45,47,49] |
Creatine | Urine, cord blood | [39,45,47,49] |
Formate | Urine, brain tissue | [29,40,45,47] |
Glycine | Plasma, urine, cord blood | [30,38,40,43] |
Phosphocholine | Urine, cord blood, brain tissue | [29,47,49,50] |
Phosphocreatine | Brain tissue | [26,27,28,29] |
α-Ketoglutarate | Plasma, urine, ocular tissues | [30,35,47] |
Acetoacetate | Urine, cord blood | [37,38,51] |
Arachidonate | Cord blood | [41,42,43] |
Arginine | Urine, brain tissue | [26,47,52] |
Dimethylamine | Urine | [37,45,47] |
Glycerol | Cord blood | [41,49,50] |
Methionine | Cord blood | [48,49,52] |
Tyrosine | Cord blood CSF, brain tissue | [25,26,48] |
Urea | Urine | [36,38,45] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locci, E.; Bazzano, G.; Demontis, R.; Chighine, A.; Fanos, V.; d’Aloja, E. Exploring Perinatal Asphyxia by Metabolomics. Metabolites 2020, 10, 141. https://doi.org/10.3390/metabo10040141
Locci E, Bazzano G, Demontis R, Chighine A, Fanos V, d’Aloja E. Exploring Perinatal Asphyxia by Metabolomics. Metabolites. 2020; 10(4):141. https://doi.org/10.3390/metabo10040141
Chicago/Turabian StyleLocci, Emanuela, Giovanni Bazzano, Roberto Demontis, Alberto Chighine, Vassilios Fanos, and Ernesto d’Aloja. 2020. "Exploring Perinatal Asphyxia by Metabolomics" Metabolites 10, no. 4: 141. https://doi.org/10.3390/metabo10040141
APA StyleLocci, E., Bazzano, G., Demontis, R., Chighine, A., Fanos, V., & d’Aloja, E. (2020). Exploring Perinatal Asphyxia by Metabolomics. Metabolites, 10(4), 141. https://doi.org/10.3390/metabo10040141