Metabolomic Profiling in the Characterization of Degenerative Bone and Joint Diseases
Abstract
:1. Introduction
2. Osteoarthritis
2.1. Local Biomarkers of Osteoarthritis
2.1.1. Bone
2.1.2. Synovial Fluid
2.2. Systemic Biomarkers of Osteoarthritis
3. Inflammatory Arthropathies
3.1. Local Biomarkers of Inflammatory Arthropathies
Synovial Fluid
3.2. Systemic Biomarkers of Inflammatory Arthropathies
4. Other Musculoskeletal Conditions
4.1. Osteonecrosis/Avascular Necrosis
4.2. Intervertebral Disc Degeneration
4.3. Osteoporosis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, X.; Shah, D.; Gandhi, K.; Wei, W.; Dwibedi, N.; Webster, L.; Sambamoorthi, U. Clinical, humanistic, and economic burden of osteoarthritis among noninstitutionalized adults in the United States. Osteoarthr. Cartil. 2019, 27, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.P.; Al Snih, S.; Markides, K.S.; Faul, J.D.; Vincent, B.M.; Hall, O.T.; Peterson, M.D. The burden of health conditions across race and ethnicity for aging Americans: Disability-adjusted life years. Medicine 2019, 98, e17964. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Mendy, A.; Vieira, E.R. Various Types of Arthritis in the United States: Prevalence and Age-Related Trends from 1999 to 2014. Am. J. Public Health 2018, 108, 256–258. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, J.; Kim, J.; Ahn, J.K.; Cha, H.-S.; Kim, K.H. Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis. Jt. Bone Spine 2017, 84, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, H.; Chen, T.; Zhu, W.; Ding, S.; Xu, K.; Xu, Z.; Guo, Y.; Zhang, J. Metabolic analysis of osteoarthritis subchondral bone based on UPLC/Q-TOF-MS. Anal. Bioanal. Chem. 2016, 408, 4275–4286. [Google Scholar]
- Mickiewicz, B.; Kelly, J.J.; Ludwig, T.E.; Weljie, A.M.; Wiley, J.P.; Schmidt, T.A.; Vogel, H.J. Metabolic analysis of knee synovial fluid as a potential diagnostic approach for osteoarthritis. J. Orthop. Res. 2015, 33, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Senol, O.; Gundogdu, G.; Gundogdu, K.; Miloglu, F.D. Investigation of the relationships between knee osteoarthritis and obesity via untargeted metabolomics analysis. Clin. Rheumatol. 2019, 38, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, G.; Likhodii, S.; Liu, M.; Aref-Eshghi, E.; Harper, P.E.; Martin, G.; Furey, A.; Green, R.; Randell, E.; et al. Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthr. Cartil. 2016, 24, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, G.; Wang-Sattler, R.; Hart, D.J.; Arden, N.K.; Hakim, A.J.; Illig, T.; Spector, T.D. Serum branched-chain amino acid to histidine ratio: A novel metabolomic biomarker of knee osteoarthritis. Ann. Rheum. Dis. 2010, 69, 1227–1231. [Google Scholar] [CrossRef]
- Loeser, R.F.; Pathmasiri, W.; Sumner, S.J.; McRitchie, S.; Beavers, D.; Saxena, P.; Nicklas, B.J.; Jordan, J.; Guermazi, A.; Hunter, D.J.; et al. Association of urinary metabolites with radiographic progression of knee osteoarthritis in overweight and obese adults: An exploratory study. Osteoarthr. Cartil. 2016, 24, 1479–1486. [Google Scholar]
- Lamers, R.J.A.N.; van Nesselrooij, J.H.J.; Kraus, V.B.; Jordan, J.M.; Renner, J.B.; Dragomir, A.D.; Luta, G.; van der Greef, J.; DeGroot, J. Identification of an urinary metabolite profile associated with osteoarthritis. Osteoarthr. Cartil. 2005, 13, 762–768. [Google Scholar] [PubMed] [Green Version]
- Nasr, M.N.; Gineinah, M.M.; El-Bendary, E.R. Synthesis and in vitro antibacterial evaluation of novel imidazo[2’, 1′:5, 1]-1,2,4-triazolo[4,3-c]-quinazoline derivatives of 5-thioxo-1, 2, 4-triazole, 4-oxothiazolidine, and their open-chain counterparts. Arch. Pharm. 2003, 336, 560–566. [Google Scholar] [CrossRef]
- Kang, I.S.; Kim, C. Taurine Chloramine Inhibits Osteoclastic Differentiation and Osteoclast Marker Expression in RAW 264.7 Cells. Adv. Exp. Med. Biol. 2019, 1155, 61–70. [Google Scholar]
- Briggs, M.T.; Kuliwaba, J.S.; Muratovic, D.; Everest-Dass, A.V.; Packer, N.H.; Findlay, D.M.; Hoffmann, P. MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics 2016, 16, 1736–1741. [Google Scholar] [PubMed]
- Urita, A.; Matsuhashi, T.; Onodera, T.; Nakagawa, H.; Hato, M.; Amano, M.; Seito, N.; Minami, A.; Nishimura, S.-I.; Iwasaki, N. Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage. Arthritis Rheum. 2011, 63, 3428–3438. [Google Scholar] [CrossRef] [PubMed]
- Jonasdottir, H.S.; Brouwers, H.; Kwekkeboom, J.C.; van der Linden, H.M.J.; Huizinga, T.; Kloppenburg, M.; Toes, R.E.M.; Giera, M.; Ioan-Facsinay, A. Targeted lipidomics reveals activation of resolution pathways in knee osteoarthritis in humans. Osteoarthr. Cartil. 2017, 25, 1150–1160. [Google Scholar] [CrossRef] [Green Version]
- Kosinska, M.K.; Liebisch, G.; Lochnit, G.; Wilhelm, J.; Klein, H.; Kaesser, U.; Lasczkowski, G.; Rickert, M.; Schmitz, G.; Steinmeyer, J. Sphingolipids in Human Synovial Fluid—A Lipidomic Study. PLoS ONE 2014, 9, e91769. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.K.; Rawle, R.A.; Wallace, C.W.; Brooks, E.G.; Adams, E.; Greenwood, M.C.; Olmer, M.; Lotz, M.K.; Bothner, B.; June, R.K. Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1174–1184. [Google Scholar]
- Maerz, T.; Sherman, E.; Newton, M.; Yilmaz, A.; Kumar, P.; Graham, S.F.; Baker, K.C. Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post-traumatic osteoarthritis. J. Orthop. Res. 2018, 36, 1969–1979. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Shen, N.; Chen, H.; Ni, S.; Zhang, T.; Hu, M.; Wang, J.; Sun, L.; Yang, X. Global and targeted metabolomics of synovial fluid discovers special osteoarthritis metabolites. J. Orthop. Res. 2017, 35, 1973–1981. [Google Scholar] [CrossRef] [Green Version]
- Maher, A.D.; Coles, C.; White, J.; Bateman, J.F.; Fuller, E.S.; Burkhardt, D.; Little, C.B.; Cake, M.; Read, R.; McDonagh, M.B.; et al. 1H NMR spectroscopy of serum reveals unique metabolic fingerprints associated with subtypes of surgically induced osteoarthritis in sheep. J. Proteome Res. 2012, 11, 4261–4268. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; He, X.; Cheng, K.; Zhang, L.; Chen, D.; Wang, X.; Qiu, G.; Cao, X.; Weng, X. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res. 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, A.K.; Rawle, R.A.; Wallace, C.W.; Adams, E.; Greenwood, M.C.; Bothner, B.; June, R.K. Global metabolomic profiling of human synovial fluid for rheumatoid arthritis biomarkers. Clin. Exp. Rheumatol. 2019, 37, 393–399. [Google Scholar] [PubMed]
- Yang, X.Y.; Di Zheng, K.; Lin, K.; Zheng, G.; Zou, H.; Wang, J.M.; Lin, Y.Y.; Chuka, C.M.; Ge, R.S.; Zhai, W.; et al. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study. PLoS ONE 2015, 10, e0132695. [Google Scholar] [CrossRef]
- Li, J.; Che, N.; Xu, L.; Zhang, Q.; Wang, Q.; Tan, W.; Zhang, M. LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 1493–1502. [Google Scholar] [CrossRef]
- Surowiec, I.; Arlestig, L.; Rantapaa-Dahlqvist, S.; Trygg, J. Metabolite and Lipid Profiling of Biobank Plasma Samples Collected Prior to Onset of Rheumatoid Arthritis. PLoS ONE 2016, 11, e0164196. [Google Scholar]
- Zhou, J.; Chen, J.; Hu, C.; Xie, Z.; Li, H.; Wei, S.; Wang, D.; Wen, C.; Xu, G. Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2016, 127, 60–67. [Google Scholar]
- Smolenska, Z.; Smolenski, R.T.; Zdrojewski, Z. Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis-potential biomarkers of disease activity and drug treatment. Biomarkers 2016, 21, 218–224. [Google Scholar]
- Madsen, R.K.; Lundstedt, T.; Gabrielsson, J.; Sennbro, C.-J.; Alenius, G.-M.; Moritz, T.; Rantapaa-Dahlqvist, S.; Trygg, J. Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res. 2011, 13, R19. [Google Scholar] [CrossRef] [Green Version]
- Lauridsen, M.B.; Bliddal, H.; Christensen, R.; Danneskiold-samsøe, B.; Bennett, R.; Keun, H.; Lindon, J.C.; Nicholson, J.K.; Dorff, M.H.; Jaroszewski, J.W.; et al. 1H NMR Spectroscopy-Based Interventional Metabolic Phenotyping: A Cohort Study of Rheumatoid Arthritis Patients research articles Experimental Procedures. J. Proteome Res. 2010, 9, 4545–4553. [Google Scholar]
- Sasaki, C.; Hiraishi, T.; Oku, T.; Okuma, K.; Suzumura, K.; Hashimoto, M.; Ito, H.; Aramori, I.; Hirayama, Y. Metabolomic approach to the exploration of biomarkers associated with disease activity in rheumatoid arthritis. PLoS ONE 2019, 14, e0219400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giera, M.; Ioan-Facsinay, A.; Toes, R.; Gao, F.; Dalli, J.; Deelder, A.M.; Serhan, C.N.; Mayboroda, O.A. Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim. Biophys. Acta 2012, 1821, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosinska, M.K.; Liebisch, G.; Lochnit, G.; Wilhelm, J.; Klein, H.; Kaesser, U.; Lasczkowski, G.; Rickert, M.; Schmitz, G.; Steinmeyer, J. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum. 2013, 65, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R.; Chokesuwattanaskul, S.; Phelan, M.M.; Welting, T.J.M.; Lian, L.-Y.; Peffers, M.J.; Wright, H.L. (1)H NMR Metabolomics Identifies Underlying Inflammatory Pathology in Osteoarthritis and Rheumatoid Arthritis Synovial Joints. J. Proteome Res. 2018, 17, 3780–3790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andonian, B.J.; Chou, C.-H.; Ilkayeva, O.R.; Koves, T.R.; Connelly, M.A.; Kraus, W.E.; Kraus, V.B.; Huffman, K.M. Plasma MicroRNAs in Established Rheumatoid Arthritis Relate to Adiposity and Altered Plasma and Skeletal Muscle Cytokine and Metabolic Profiles. Front. Immunol. 2019, 10, 1475. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, G.; Zhang, J.; Gao, S.; Chen, T.; Ding, S.; Zhu, Y. Global urinary metabolic profiling of the osteonecrosis of the femoral head based on UPLC-QTOF/MS. Metabolomics 2019, 15, 26. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Sheng, J.; Hu, B.; Zhu, Z.; Zhou, S.; Yin, J.; Gong, Q.; Wang, Y.; Zhang, C. Unique plasma metabolomic signature of osteonecrosis of the femoral head. J. Orthop. Res. 2016, 34, 1158–1167. [Google Scholar] [CrossRef]
- Narayanan, A.; Khanchandani, P.; Borkar, R.M.; Ambati, C.R.; Roy, A.; Han, X.; Bhoskar, R.N.; Ragampeta, S.; Gannon, F.; Mysorekar, V.; et al. Avascular Necrosis of Femoral Head: A Metabolomic, Biophysical, Biochemical, Electron Microscopic and Histopathological Characterization. Sci. Rep. 2017, 7, 10721. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, T.; Ding, S.; Yang, G.; Xu, Z.; Xu, K.; Zhang, S.; Ma, T.; Zhang, J. Metabolomic study of the bone trabecula of osteonecrosis femoral head patients based on UPLC–MS/MS. Metabolomics 2016, 12, 48. [Google Scholar] [CrossRef]
- Ren, X.; Fan, W.; Shao, Z.; Chen, K.; Yu, X.; Liang, Q. A metabolomic study on early detection of steroid-induced avascular necrosis of the femoral head. Oncotarget 2018, 9, 7984–7995. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.J.; Liu, B.Y.; Zhang, Y.T.; Chen, X.Z.; Qiao, G.Y.; Wang, S.; Ma, Z.L. MiR-145 silencing promotes steroid-induced avascular necrosis of the femoral head repair via upregulating VEGF. Eur. Rev. Med. Pharm. Sci. 2017, 21, 3763–3769. [Google Scholar]
- Shan, L.; Liao, F.; Jin, H.; Ye, F.; Tong, P.; Xiao, L.; Zhou, J.; Wu, C. Plasma metabonomic profiling of lumbar disc herniation and its traditional Chinese medicine subtypes in patients by using gas chromatography coupled with mass spectrometry. Mol. Biosyst. 2014, 10, 2965–2973. [Google Scholar] [CrossRef] [PubMed]
- Radek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.; Albrecht, L.; Grodzka, M.; Depta, A.; Radek, A. Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magn. Reson. Imaging 2016, 34, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.; Canalis, E. Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur. J. Endocrinol. 2015, 173, R131–R151. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Liu, J.; Zhang, Q.; Ying, H.; Jiye, A.; Sun, J.; Wu, D.; Wang, Y.; Li, J.; Liu, Y. Metabolomic profiles delineate signature metabolic shifts during estrogen deficiency-induced bone loss in rat by GC-TOF/MS. PLoS ONE 2013, 8, e54965. [Google Scholar]
- Miyamoto, T.; Hirayama, A.; Sato, Y.; Koboyashi, T.; Katsuyama, E.; Kanagawa, H.; Miyamoto, H.; Mori, T.; Yoshida, S.; Fujie, A.; et al. A serum metabolomics-based profile in low bone mineral density postmenopausal women. Bone 2017, 95, 1–4. [Google Scholar] [CrossRef]
- Pontes, T.A.; Barbosa, A.D.; Silva, R.D.; Melo-Junior, M.R.; Silva, R.O. Osteopenia-osteoporosis discrimination in postmenopausal women by 1H NMR-based metabonomics. PLoS ONE 2019, 14, e0217348. [Google Scholar]
Author | Year | Specimen Analysis | Upregulated Metabolites | Downregulated Metabolites | Pathways Affected |
---|---|---|---|---|---|
Kim, S [4] | 2017 | Location: Knee Matrix: Synovial Fluid Characterization: CG/TOF MS | Metabolites discriminating early vs. late stage OA: Squalene; Palmitoleic acid; Pentadecanoic acid; Glycerol; Myristic acid; Lignoceric acid; Alpha-tocopherol; Heptadecanoic acid; Oleic acid; Linoleic acid; Threose; 3-Hydroxypropionate; Lanosterol; Ethanolamine; Putrescine; N-Carbamoylaspartate; Capric acid; Malate; Asparagine; Arachidonic acid; Pelargonic acid; Benzoate; Palmitic acid; 1-Monostearin; Salicylaldehyde; Stearic acid; Adipate; Phenylalanine | N/A | Glycolysis; TCA cycle; Amino acid metabolism; Fatty acid metabolism; Glycerolipid metabolism; Glycerophospholipid metabolism |
Yang, G [5] | 2016 | Location: Knee Matrix: Subchondral bone Characterization: UPLC/Q-TOF-MS | Taurine; L-Tyrosine; Hypoxanthine; L-Carnitine; Uridine; Guanosine; 2-Hydroxycinnamic acid; Triethanolamine; 2-Phenylacetamide; Octadecylamine; Retinol acetate | Trichocarposide; Lyso PC(P-16:0); Lyso PC(18:1(9Z)); N6,N6,N6-trimethyl-L-Lysine; 5-(4′-Hydroxyphenyl)-Gamma-Valerolactone-4′-O-Glucoronide; SM(d18:1/22:1(13Z)); SM(d16:1/24:1(15Z)) | Taurine and hypotaurine metabolism; β-Alanine metabolism; Phenylalanine metabolism; Tyrosine metabolism; Lysine degradation; Pyrimidine metabolism; Purine metabolism; Sphingolipid metabolism |
Mickiewicz, B [6] | 2015 | Location: Knee Matrix: Synovial Fluid Characterization: 1H-NMR; GC-MS | Fructose; Citrate | O-Acetylcarnitine; N-Phenylacetylglycine; Methionine; Ethanol; Creatine; Malate; Ethanolamine; 3-Hydroxybutyrate; Hexanoylcarnitine | TCA cycle; Fatty acid and lipid metabolism |
Senol, O [7] | 2019 | Location: Systemic Matrix: Serum Characterization: LC/Q-TOF/MS/MS | PA (18:2(9Z,12Z)); PA (16:0/16:0); Phosphatidylethanol-amine; Propane-1,3-diol sulfate; Benzoic acid; Phosphoric acid; Butyric acid; Acetic acid; L-Valine; L-Alanine; Stearic acid; Benzeneethanamine; Carbamic acid; Hydroxylamine; Indoleacetic acid; Urea; Oleic Acid; Lyso- PC(18:2(9Z,12Z)) | Glycine | Ether lipid metabolism; Glycerophospholipid metabolism; Glycerolipid metabolism; Cysteine and methionine metabolism; Phenylalanine metabolism; Oxidative phosphorylation; Butanoate metabolism; Glycolysis; Gluconeogenesis; Aminoacyl-tRNA biosynthesis; Alanine, aspartate, and glutamate metabolism Fatty acid biosynthesis; Nitrogen metabolism; Tryptophan metabolism; Arginine and Proline metabolism; Glycerine, serine, threonine metabolism |
Zhang, W [8] | 2016 | Location: Systemic Matrix: Serum Characterization: TQ UPLP/MS | Ornithine; Proline | Arginine; LysoPhosphatidylch-oline acyl C28:1; Phosphatidylcholine diacyl C36:6; Phosphatidylcholine acyl-alkyl C36:2; Phosphatidylcholine acyl-alkyl C38.0; Hydroxy-Sphingomyeline C14:1 | Arginine catabolism |
Zhai, G [9] | 2010 | Location: Systemic Matrix: Serum Characterization: Q TRAP; LC/MS/MS | Valine; Leucine | N/A | Arginine catabolism |
Loeser, RF [10] | 2016 | Location: Systemic Matrix: Urine Characterization: 1H-NMR | Glycolate; Hippurate; Histidine | Trigonelline; Alanine; N,N-Dimethylglycine | Amino acid metabolism; Lipid metabolism; Glycosphingolipid metabolism; GalNAc β(l-3)Gal pathway |
Lamers, R [11] | 2005 | Location: Systemic Matrix: Urine Characterization: 1H-NMR | Hydroxybutyrate; Pyruvate; Creatine/creatinine Glycerol | Histidine; Methylhistidine | Histidine metabolism; Fat metabolism |
Author | Year | Specimen Analysis | Upregulated Metabolites | Downregulate Metabolites | Pathways Affected |
---|---|---|---|---|---|
Carlson, AK [23] | 2019 | Location: Not stated Matrix: Synovial Fluid Characteriz-ation: HPLC-MS | 5-hydroxyibuprofen 5β-pregnane-3α, 20α-diol Traumatic acid | 5-methylcytosine; Glutamyl-cysteine; Arginine; Phenylacetaldehyde; Glutamyl-cysteine; resveratrol; 5-methylcytosine; 2′-deoxyuridine; Deoxyadenosine; 2-aminoethylphosphonic acid | Ibuprofen metabolism; Gluco- and Mineralcorticoid metabolism; α-linolenic acid metabolism; Gene expression; γ-Glutamyl cycle; Biological oxidation; Arginine biosynthesis; DNA methylation; NAD metabolism; NO2-dependent IL-12 pathway; Pyrimidine metabolism; Arginine and Proline metabolism; Nitric oxide metabolism; VEGFR1 specific signals; Putrescine biosynthesis; Creatine biosynthesis; Arginine and ornithine metabolism; Lipoate biosynthesis; SHP2 signaling; Corticosteroids and cardioprotection; Glutathione biosynthesis; Angiotensinogen metabolism; Protein repair; Phenylethylamine degradation; Amino acid metabolism; Vitamin C metabolism; Endothelin pathways; Ion channels; Urea cycle; Wybutosine biosynthesis; Molybdenum cofactor biosynthesis; ABC transporters; A9 β1 integrin signaling; Citrulline- nitric oxide cycle; Phenylalanine degradation |
Yang, XY [24] | 2015 | Location: Knee Matrix: Synovial fluid and synovial tissues Characteriz-ation: GC/TOF MS | β-Mannosylglycerate; Diglycerol; Lactic acid; Carnitine; Pipecolinic acid | 5-Methoxytryptamine; Citric acid; Gluconic lactone; D-Glucose; Glucose-1-phosphate; Mannose; Ribitol; L-Valine | Tryptophan metabolism; Lysine degradation; Citrate cycle; Pentose phosphate pathway; Glycolysis; Fructose and mannose metabolism; Lysine degradation; Pentose and glucuronate interconversions; Valine, leucine, and isoleucine degradation |
Li, J [25] | 2018 | Location: Systemic Matrix: Serum Characteriz-ation: UPLC-HRMS | 4-Methoxyphenylacetic acid; Glutamic acid; L-Leucine; L-Phenylalanine; L-Tryptophan; L-Proline; Glyceraldehyde; Fumaric acid; Cholesterol | Capric acid; Argininosuccinic acid; Billirubin | Inflammation injury; Amino acid metabolism; Oxidative stress; Phospholipid metabolism; Cortisone metabolism; Bilirubin metabolism |
Surowiec, I [26] | 2016 | Location: Systemic Matrix: Plasma Characteriz-ation: LC-MS | LPC(14:0),(16:0), (16:1),(18:1) (18:3),(20:4),(20:3); Phosphocholines (30:1),(32:1), (32:2),(34:2),(34:4),(O-34:3); Sphingomyelins(33:1),(32:1), (38:1),(39:1); Kynurenine; 3-Indolelactic acid; Hypoxanthine | β-Hydroxypalmitic acid; Oleic acid; Tryptophan | Increased lipid inflammation; Increased oxidative stress; Increased beta oxidation/energy demands; Tryptophan metabolism; Xanthine oxidase metabolism |
Zhou, J [27] | 2016 | Location: Systemic Matrix: Serum Characteriz-ation: GC-MS | Eicosanoate; Docosahexaenoate; Palmitelaidate; Monostearin; Cis-f,8,11-Eicosatrienoate; Hexadecanoate; Arachidonate; Oleate; Trans--9-Octadecenoate; D-Mannose; Scyllo-Inositol; Glycerol; Ribose; Cholesterol | Glucose; Urate; Methionine; Threonine; Serine; Alanine; Leucine; Lysine; Valine; Isoleucine; Asparagine; Phenylalanine; Tyrosine; Proline; Urea; 3-Hydroxybutanoate; 2-Ketoisocaproate; 3-Methyl-2-Oxovalerate; 2-Aminobutyrate; Alanine; Pyroglutamate Trans-4-Hydroxy-D-proline; Urate; Ribonate; 1,5-Anhydrosorbitol | Fatty acid metabolism; Alanine, aspartate, and glutamate metabolism; Valine, leucine, and isoleucine metabolism; Amino acid metabolism; Glutathione metabolism; Glycine, serine, and threonine metabolism; Cysteine and methionine metabolism; Arginine and proline metabolism; Nucleotide metabolism; Glycolysis; Carbohydrate metabolism; Inositol phosphate metabolism |
Smolenska, Z [28] | 2016 | Location: Systemic Matrix: Plasma Characteriz-ation: LC-MS/MS | Arginine; Aspartic acid; Glutamic acid; Phenylalanine; Serine; Threonine | Lysine | Amino acid metabolism; Nicotinamide metabolism |
Madsen, RK [29] | 2011 | Location: Systemic Matrix: Serum Characteriz-ation: LC-MS | Glyceric Acid; D-Ribofuranose; Hypoxanthine | Histidine; Threonic acid; Methionine; Cholesterol; Asparagine; Threonine | Increased nucleotide synthesis; Ascorbic acid metabolism |
Lauridsen, M [30] | 2010 | Location: Systemic Matrix: Plasma Characteriza-tion: 1H-NMR | Cholesterol C-21; Lactate; Acetylated glycoprotein; Unsaturated lipid | HDL | Increased oxidative stress; Synovial membrane degradation |
Sasaki, C [31] | 2019 | Location: Systemic Matrix: Plasma Characteriza-tion: CE-Q-TOF-MS | Glyceric acid; Phenylalanine; Tyrosine; Pyruvic acid; Glycerol-3-phosophate; Glutamic acid; Threo-3-methyl-L-aspartic acid; Glucuronic acid; Galacturonic acid; 3-Methylhistidine; Gluconic acid; Threonic acid; Pelargonic acid; Asymmetric dimethylarginine; N,N-Dimethylglycine; Mucic acid; Glucaric acid; Lactic acid; 2-hydroxybutyric acid; 2-hydroxyisobutyric acid | Histidine; Serine; Azelaic acid; N-Acetylleucine; Cysteine-glutathione disulphide; Cysteine-glutathione disulphide (divalent); γ-butyrobetaine; 1-Methylnicotinamide | Glycolysis; TCA cycle; Amino acid metabolism; Arginine metabolism |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swank, K.R.; Furness, J.E.; Baker, E.A.; Gehrke, C.K.; Biebelhausen, S.P.; Baker, K.C. Metabolomic Profiling in the Characterization of Degenerative Bone and Joint Diseases. Metabolites 2020, 10, 223. https://doi.org/10.3390/metabo10060223
Swank KR, Furness JE, Baker EA, Gehrke CK, Biebelhausen SP, Baker KC. Metabolomic Profiling in the Characterization of Degenerative Bone and Joint Diseases. Metabolites. 2020; 10(6):223. https://doi.org/10.3390/metabo10060223
Chicago/Turabian StyleSwank, Katherine R., Jamie E. Furness, Erin A. Baker, Corinn K. Gehrke, Stephen P. Biebelhausen, and Kevin C. Baker. 2020. "Metabolomic Profiling in the Characterization of Degenerative Bone and Joint Diseases" Metabolites 10, no. 6: 223. https://doi.org/10.3390/metabo10060223
APA StyleSwank, K. R., Furness, J. E., Baker, E. A., Gehrke, C. K., Biebelhausen, S. P., & Baker, K. C. (2020). Metabolomic Profiling in the Characterization of Degenerative Bone and Joint Diseases. Metabolites, 10(6), 223. https://doi.org/10.3390/metabo10060223