Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease
Abstract
:1. Introduction
2. Results
2.1. Study Design, Animals, and Food
2.2. Comparison of Metabolites at Baseline between Healthy Dogs and Those with CKD
2.3. Effect of Added Betaine and Fiber on Plasma Metabolites in Dogs with CKD
2.4. Correlations of Plasma Metabolites with Known Markers of CKD
2.5. Effect of Added Betaine and Fiber on Fecal pH and Metabolites in Dogs with CKD
2.6. Effect of Added Betaine and Fiber on the Fecal Microbiome in Dogs with CKD
3. Discussion
4. Materials and Methods
4.1. Study Foods
4.2. Animals and Experimental Design
4.3. Metabolite Analysis
4.4. Fecal Microbiome Analysis and Bioinformatics Processing
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Renal Interest Society. IRIS Staging of CKD (Modified 2019). Available online: http://www.iris-kidney.com/guidelines/staging.html (accessed on 23 June 2020).
- Relford, R.; Robertson, J.; Clements, C. Symmetric dimethylarginine: Improving the diagnosis and staging of chronic kidney disease in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2016, 46, 941–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Melendez, L.D.; Jewell, D.E. Relationship between lean body mass and serum renal biomarkers in healthy dogs. J. Vet. Intern. Med. 2015, 29, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Fritsch, D.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Jewell, D.E. A longitudinal study on the acceptance and effects of a therapeutic renal food in pet dogs with IRIS-Stage 1 chronic kidney disease. J. Anim. Physiol. Anim. Nutr. 2018, 102, 297–307. [Google Scholar] [CrossRef] [Green Version]
- International Renal Interest Society. IRIS Treatment Recommendations for CKD in Dogs. 2019. Available online: http://www.iris-kidney.com/guidelines/recommendations.html (accessed on 23 June 2020).
- Hall, J.A.; Jackson, M.I.; Jewell, D.E.; Ephraim, E. Chronic kidney disease in cats alters response of the plasma metabolome and fecal microbiome to dietary fiber. PLoS ONE 2020, 15, e0235480. [Google Scholar] [CrossRef]
- Hasegawa, S.; Jao, T.M.; Inagi, R. Dietary metabolites and chronic kidney disease. Nutrients 2017, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Goshtasbi, N.; Yuan, J.; Jellbauer, S.; Moradi, H.; Raffatellu, M.; Kalantar-Zadeh, K. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am. J. Nephrol. 2012, 36, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.; Kesper, M.S.; Marschner, J.A.; Konrad, L.; Ryu, M.; Vr, S.K.; Kulkarni, O.P.; Mulay, S.R.; Romoli, S.; Demleitner, J.; et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J. Am. Soc. Nephrol. 2017, 28, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Bryniarski, M.A.; Hamarneh, F.; Yacoub, R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Exp. Biol. Med. Maywood 2019, 244, 514–525. [Google Scholar] [CrossRef]
- Hall, J.A.; MacLeay, J.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Schiefelbein, H.; Paetau-Robinson, I.; Jewell, D.E. Positive impact of nutritional interventions on serum symmetric dimethylarginine and creatinine concentrations in client-owned geriatric cats. PLoS ONE 2016, 11, e0153654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.A.; MacLeay, J.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Schiefelbein, H.; Paetau-Robinson, I.; Jewell, D.E. Positive impact of nutritional interventions on serum symmetric dimethylarginine and creatinine concentrations in client-owned geriatric dogs. PLoS ONE 2016, 11, e0153653. [Google Scholar] [CrossRef] [Green Version]
- Fuke, N.; Nagata, N.; Suganuma, H.; Ota, T. Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients 2019, 11, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in inflammation: Mechanistic aspects and applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Pan, Y.; Wang, X.; Fan, C.Y.; Zhu, Q.; Li, J.M.; Wang, S.J.; Kong, L.D. Betaine reduces serum uric acid levels and improves kidney function in hyperuricemic mice. Planta Med. 2014, 80, 39–47. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Introducing inulin-type fructans. Br. J. Nutr. 2005, 93 (Suppl. 1), S13–S25. [Google Scholar] [CrossRef]
- Younes, H.; Garleb, K.; Behr, S.; Rémésy, C.; Demigné, C. Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J. Nutr. 1995, 125, 1010–1016. [Google Scholar] [CrossRef]
- Ramos, C.I.; Armani, R.G.; Canziani, M.E.F.; Dalboni, M.A.; Dolenga, C.J.R.; Nakao, L.S.; Campbell, K.L.; Cuppari, L. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: A randomized controlled trial. Nephrol. Dial. Transplant. 2019, 34, 1876–1884. [Google Scholar] [CrossRef]
- Alexander, C.; Cross, T.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; Suchodolski, J.S.; de Godoy, M.R.C.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 2018, 120, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Joyce, S.A.; Kamil, A.; Fleige, L.; Gahan, C.G.M. The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome. Front. Nutr. 2019, 6, 171. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Endrighi, M.; Lisenko, K.G.; de Oliveira, M.R.D.; Damasceno, M.R.; Claudino, J.A.; Gutierres, P.G.; Peconick, A.P.; Saad, F.; Zangeronimo, M.G. Oat beta-glucan as a dietary supplement for dogs. PLoS ONE 2018, 13, e0201133. [Google Scholar] [CrossRef]
- Hill, E.; Sapa, H.; Negrea, L.; Bame, K.; Hostetter, T.; Barkoukis, H.; Dusso, A.; Dobre, M. Effect of oat β-glucan supplementation on chronic kidney disease: A feasibility study. J. Ren. Nutr. 2020, 30, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Polzin, D.J. Evidence-based step-wise approach to managing chronic kidney disease in dogs and cats. J. Vet. Emerg. Crit. Care San-Antonio 2013, 23, 205–215. [Google Scholar] [CrossRef]
- Lisowska-Myjak, B. Uremic toxins and their effects on multiple organ systems. Nephron Clin. Pract. 2014, 128, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Mair, R.D.; Sirich, T.L.; Plummer, N.S.; Meyer, T.W. Characteristics of colon-derived uremic solutes. Clin. J. Am. Soc. Nephrol. 2018, 13, 1398–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Liang, S.; Liu, H.; Chen, L.; Sun, L.; Wei, M.; Jiang, H.; Wang, J. Metabolite profiling of feces and serum in hemodialysis patients and the effect of medicinal charcoal tablets. Kidney Blood Press. Res. 2018, 43, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.; Spector, T.D.; Menni, C. Blood, urine and faecal metabolite profiles in the study of adult renal disease. Arch. Biochem. Biophys. 2016, 589, 81–92. [Google Scholar] [CrossRef]
- Stone, W.L.; Pham, T.; Mohiuddin, S.S. Biochemistry, Antioxidants. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Innes, J.K.; Calder, P.C. Marine omega-3 (N-3) fatty acids for cardiovascular health: An update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [Green Version]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef]
- Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 2014, 510, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Sutter, B.M.; Wang, Y.; Kuang, Z.; Tu, B.P. A metabolic function for phospholipid and histone methylation. Mol. Cell 2017, 66, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Rebholz, C.M.; Zheng, Z.; Grams, M.E.; Appel, L.J.; Sarnak, M.J.; Inker, L.A.; Levey, A.S.; Coresh, J. Serum metabolites associated with dietary protein intake: Results from the Modification of Diet in Renal Disease (MDRD) randomized clinical trial. Am. J. Clin. Nutr. 2019, 109, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Playdon, M.C.; Sampson, J.N.; Hoover, R.N.; Trabert, B.; Matthews, C.E.; Ziegler, R.G. A metabolomics analysis of body mass index and postmenopausal breast cancer risk. J. Natl. Cancer Inst. 2018, 110, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Renney, G.; Seralini, G.E.; Ward, M.; Antoniou, M.N. Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide. Sci. Rep. 2017, 7, 39328. [Google Scholar] [CrossRef] [Green Version]
- Chua, J.T.; Argueta, D.A.; DiPatrizio, N.V.; Kovesdy, C.P.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Endocannabinoid system and the kidneys: From renal physiology to injury and disease. Cannabis Cannabinoid Res. 2019, 4, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.A.; Jewell, D.E.; Ephraim, E. Changes in the fecal metabolome are associated with feeding fiber not health status in cats with chronic kidney disease. Metabolites 2020, 10, 281. [Google Scholar] [CrossRef]
- Liang, Y.S.; Qi, W.T.; Guo, W.; Wang, C.L.; Hu, Z.B.; Li, A.K. Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, Y.; Kanatsu, J.; Toh, M.; Naka, A.; Kondo, K.; Iida, K. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPARα/γ and JNK pathways in adipocyte and macrophage co-cultures. PLoS ONE 2016, 11, e0149676. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Mol. Basel Switz. 2019, 24, 1067. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.; Royston, K.J.; Li, Y.; Stoll, M.L.; Skibola, C.F.; Wilson, L.S.; Barnes, S.; Morrow, C.D.; Tollefsbol, T.O. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PLoS ONE 2017, 12, e0189756. [Google Scholar] [CrossRef] [Green Version]
- McGraw, N.J.; Krul, E.S.; Grunz-Borgmann, E.; Parrish, A.R. Soy-based renoprotection. World J. Nephrol. 2016, 5, 233–257. [Google Scholar] [CrossRef]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.; Ahmad, N.; Anjum, F.M.; Khan, M.K.; Mushtaq, Z.; Nadeem, M.; Hussain, S. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr. J. 2015, 14, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heintz-Buschart, A.; Wilmes, P. Human gut microbiome: Function matters. Trends Microbiol. 2018, 26, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Willis, H.J.; Slavin, J.L. The influence of diet interventions using whole, plant food on the gut microbiome: A narrative review. J. Acad. Nutr. Diet. 2020, 120, 608–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, J.L.; Erickson, J.M.; Hess, J.M.; Gould, T.J.; Slavin, J.L. Prebiotic dietary fiber and gut health: Comparing the in vitro fermentations of beta-glucan, inulin and xylooligosaccharide. Nutrients 2017, 9, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.P.; et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013, 62, 1112–1121. [Google Scholar] [CrossRef]
- Foerster, J.; Maskarinec, G.; Reichardt, N.; Tett, A.; Narbad, A.; Blaut, M.; Boeing, H. The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: A randomized crossover intervention trial. PLoS ONE 2014, 9, e109606. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A double-edged sword for health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Marinelli, L.; Martin-Gallausiaux, C.; Bourhis, J.M.; Beguet-Crespel, F.; Blottiere, H.M.; Lapaque, N. Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells. Sci. Rep. 2019, 9, 643. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, J.; Zheng, Y.; Xu, Z.; Li, Y.; Zhou, S.; Zhang, C. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed. Pharmacother. 2020, 127, 110182. [Google Scholar] [CrossRef]
- Zackular, J.P.; Baxter, N.T.; Iverson, K.D.; Sadler, W.D.; Petrosino, J.F.; Chen, G.Y.; Schloss, P.D. The gut microbiome modulates colon tumorigenesis. mBio 2013, 4, e00692-13. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.M.; Jesus, E.C.; Lopes, A.; Aguiar, S., Jr.; Begnami, M.D.; Rocha, R.M.; Carpinetti, P.A.; Camargo, A.A.; Hoffmann, C.; Freitas, H.C.; et al. Tissue-Associated Bacterial Alterations in Rectal Carcinoma Patients Revealed by 16S rRNA Community Profiling. Front. Cell Infect. Microbiol. 2016, 6, 179. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Peters, B.A.; Friedlander, C.; Freiman, H.J.; Goedert, J.J.; Sinha, R.; Miller, G.; Bernstein, M.A.; Hayes, R.B.; Ahn, J. Association of dietary fibre intake and gut microbiota in adults. Br. J. Nutr. 2018, 120, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef]
- Ephraim, E.; Jackson, M.I.; Yerramilli, M.; Jewell, D.E. Soluble fiber and omega-3 fatty acids reduce levels of advanced glycation end products and uremic toxins in senior dogs by modulating the gut microbiome. J. Food Sci. Nutr. Res. 2020, 3, 18–33. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Surapaneni, A.; Levey, A.S.; Sarnak, M.J.; Inker, L.A.; Appel, L.J.; Coresh, J.; Grams, M.E. The serum metabolome identifies biomarkers of dietary acid load in 2 studies of adults with chronic kidney disease. J. Nutr. 2019, 149, 578–585. [Google Scholar] [CrossRef]
- Kim, K.; Taylor, S.L.; Ganti, S.; Guo, L.; Osier, M.V.; Weiss, R.H. Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. Omics J. Integr. Biol. 2011, 15, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, J.; Guo, L.; Liu, L.; Wen, J.; Xu, L.; Yan, M.; Li, Z.; Zhang, X.; Nan, P.; et al. A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis. Oncotarget 2016, 7, 87496–87510. [Google Scholar] [CrossRef]
- National Academy of Sciences. National Research Council Committee Update of the Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press (US), National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Jackson, M.I.; Jewell, D.E. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes 2019, 10, 298–320. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Yu, S.; Jewell, D.E. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides. Vet. J. 2014, 202, 588–596. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.4-6. Available online: https://CRAN.R-project.org/package=vegan (accessed on 31 August 2020).
Study Foods | |||
---|---|---|---|
Control | Low Soluble Fiber plus Betaine | High Soluble Fiber plus Betaine | |
Proximate analysis | |||
Moisture | 9.0 | 8.8 | 9.1 |
Ash | 3.6 | 3.7 | 3.5 |
Crude fat | 19.2 | 20.4 | 20.0 |
Crude protein | 15.7 | 15.9 | 14.8 |
Crude fiber | 1.6 | 1.7 | 1.8 |
Neutral detergent fiber | 4.4 | 4.4 | 5.1 |
Soluble fiber | 1.9 | 2.0 | 2.1 |
Total fiber | 7.5 | 7.5 | 7.9 |
Lysine | 1.53 | 1.34 | 1.37 |
Methionine | 0.64 | 0.63 | 0.58 |
Cystine | 0.26 | 0.25 | 0.24 |
Phosphorus | 0.34 | 0.34 | 0.33 |
Potassium | 0.64 | 0.65 | 0.62 |
Chloride | 0.62 | 0.64 | 0.59 |
Calcium | 0.63 | 0.65 | 0.61 |
Magnesium | 0.08 | 0.08 | 0.09 |
Betaine | 0.02 | 0.50 | 0.50 |
Choline, ppm | 2250 | 2236 | 2232 |
Food metabolic energy, kcal/kg | 4047 | 4044 | 4043 |
Study Foods | ||||
---|---|---|---|---|
Control | Low Soluble Fiber plus Betaine | High Soluble Fiber plus Betaine | p-Value | |
Total body mass, g | 11,583.9 ± 608.4 | 11,482.9 ± 645 | 11,482.7 ± 587.1 | 0.59 |
Lean body mass, g | 6490.1 ± 420.7 | 6532.0 ± 464 | 6525.1 ± 440.2 | 0.56 |
Total fat, g | 4666.0 ± 224.3 | 4520.8 ± 215.3 | 4531.9 ± 193.4 | 0.71 |
Bone mineral composition, g | 427.8 ± 22.2 | 430.1 ± 23.8 | 425.7 ± 22.1 | 0.59 |
Average intake, g/day | 160.5 ± 0.8 | 164.9 ± 0.9 | 161.5 ± 0.7 | * <0.001 † 0.620 ‡ 0.002 |
Creatinine, mg/dL | 0.8 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.2 | * 0.004 † 0.008 ‡ 0.790 |
SDMA, μg/dL | 16.0 ± 3.6 | 15.6 ± 3.3 | 15.9 ± 3.5 | 0.890 |
Total protein, g/dL | 5.5 ± 0.3 | 5.5 ± 0.3 | 5.5 ± 0.3 | * 0.430 † 0.046 ‡ 0.230 |
BUN, mg/dL | 14.0 ± 6.7 | 13.3 ± 6.0 | 12.2 ± 5.2 | 0.290 |
Healthy Dogs | CKD Dogs | Difference of Log-Transformed Data | ||
---|---|---|---|---|
Mean ± SE | Mean ± SE | Healthy-Renal ± SE | p-Value | |
Plasma metabolites | ||||
Acetylated peptides | ||||
phenylacetylglycine | 1.07 ± 0.11 | 2.12 ± 0.38 | −0.55 ± 0.17 | 0.003 |
phenylacetylglutamine | 0.96 ± 0.11 | 1.79 ± 0.34 | −0.51 ± 0.19 | 0.010 |
Advanced glycation end-product | ||||
N6-carboxymethyllysine | 0.83 ± 0.05 | 1.38 ± 0.12 | −0.47 ± 0.09 | <0.001 |
Benzoate metabolism | ||||
hippurate | 0.94 ± 0.16 | 4.93 ± 1.48 | −1.14 ± 0.32 | 0.001 |
4-hydroxyhippurate | 0.24 ± 0.01 | 0.88 ± 0.25 | −0.65 ± 0.20 | 0.004 |
4-acetylphenyl sulfate | 0.99 ± 0.18 | 1.75 ± 0.27 | −0.64 ± 0.23 | 0.008 |
Creatine metabolism | ||||
creatinine | 0.99 ± 0.03 | 1.12 ± 0.04 | −0.12 ± 0.04 | 0.007 |
Fatty acid, branched-chain amino acid metabolism | ||||
propionylglycine (C3) | 0.90 ± 0.11 | 1.66 ± 0.18 | −0.63 ± 0.14 | <0.001 |
Food component/plant | ||||
pyrraline | 0.61 ± 0.10 | 1.83 ± 0.34 | −0.98 ± 0.20 | <0.001 |
indoleacetylalanine | 0.48 ± 0.12 | 1.39 ± 0.28 | −1.01 ± 0.29 | 0.001 |
ferulic acid 4-sulfate | 0.63 ± 0.15 | 1.32 ± 0.26 | −0.81 ± 0.27 | 0.005 |
2-oxindole-3-acetate | 2.92 ± 1.03 | 5.71 ± 1.34 | −1.06 ± 0.37 | 0.006 |
dihydroferulic acid sulfate | 1.18 ± 0.29 | 3.42 ± 0.88 | −0.88 ± 0.32 | 0.008 |
Leucine, isoleucine, valine metabolism | ||||
isovalerylcarnitine (C5) | 1.10 ± 0.06 | 1.31 ± 0.07 | −0.17 ± 0.08 | 0.036 |
2-methylbutyrylcarnitine (C5) | 1.08 ± 0.07 | 1.41 ± 0.12 | −0.22 ± 0.11 | 0.041 |
Long-chain polyunsaturated fatty acid (n3 and n6) | ||||
tetradecadienoate (14:2) | 1.18 ± 0.08 | 0.90 ± 0.07 | 0.27 ± 0.11 | 0.019 |
docosatrienoate (22:3n6) | 1.01 ± 0.13 | 0.60 ± 0.08 | 0.51 ± 0.20 | 0.013 |
Lysine metabolism | ||||
N6,N6,N6-trimethyllysine | 0.92 ± 0.03 | 1.18 ± 0.05 | −0.24 ± 0.05 | <0.001 |
N6,N6-dimethyllysine | 0.89 ± 0.03 | 1.10 ± 0.05 | −0.19 ± 0.06 | 0.001 |
Medium-chain fatty acid | ||||
5-dodecenoate (12:1n7) | 1.48 ± 0.15 | 0.85 ± 0.10 | 0.58 ± 0.18 | 0.002 |
palmitoleate (16:1n7) | 1.15 ± 0.09 | 0.83 ± 0.07 | 0.32 ± 0.13 | 0.018 |
Phenylalanine metabolism | ||||
N-acetylphenylalanine | 0.80 ± 0.04 | 1.23 ± 0.09 | −0.40 ± 0.09 | <0.001 |
1-carboxyethylphenylalanine | 0.70 ± 0.04 | 1.11 ± 0.12 | −0.38 ± 0.12 | 0.003 |
2-hydroxyphenylacetate | 0.99 ± 0.09 | 1.24 ± 0.08 | −0.29 ± 0.12 | 0.019 |
Phospholipid metabolism | ||||
trimethylamine N-oxide | 0.87 ± 0.07 | 1.28 ± 0.12 | −0.35 ± 0.13 | 0.010 |
Pyrimidine metabolism | ||||
pseudouridine | 0.95 ± 0.03 | 1.36 ± 0.08 | −0.32 ± 0.06 | <0.001 |
Tryptophan metabolism | ||||
indoleacetylglycine | 1.05 ± 0.11 | 2.62 ± 0.77 | −0.64 ± 0.18 | 0.001 |
Tyrosine metabolism | ||||
dopamine 3-O-sulfate | 0.93 ± 0.06 | 1.67 ± 0.14 | −0.54 ± 0.10 | <0.001 |
Urea cycle; arginine and proline metabolism | ||||
dimethylarginine (ADMA + SDMA) | 0.90 ± 0.03 | 1.09 ± 0.03 | −0.19 ± 0.04 | <0.001 |
urea | 0.87 ± 0.06 | 1.67 ± 0.19 | −0.54 ± 0.12 | <0.001 |
citrulline | 0.87 ± 0.04 | 1.05 ± 0.05 | −0.19 ± 0.07 | 0.008 |
Fecal metabolites | ||||
Fatty acid, monohydroxy | ||||
3-hydroxyoctanoate | 1.06 ± 0.05 | 0.88 ± 0.05 | 0.21 ± 0.07 | 0.005 |
Food component, plant | ||||
genistein sulfate | 0.55 ± 0.13 | 0.22 ± 0.00 | 0.47 ± 0.16 | 0.005 |
Glutathione metabolism | ||||
cysteinylglycine | 0.94 ± 0.07 | 1.28 ± 0.14 | −0.26 ± 0.12 | 0.038 |
Lysine metabolism | ||||
fructosyllysine | 0.93 ± 0.10 | 1.24 ± 0.12 | −0.31 ± 0.14 | 0.032 |
Methionine, cysteine, SAM, taurine metabolism | ||||
cystathionine | 0.59 ± 0.15 | 1.28 ± 0.29 | −0.69 ± 0.29 | 0.021 |
Phenylalanine metabolism | ||||
phenylacetate | 0.94 ± 0.12 | 1.77 ± 0.27 | −0.54 ± 0.22 | 0.018 |
Baseline-End of Treatment ± SE | p-Value | |
---|---|---|
Low soluble fiber plus betaine food | ||
Leucine, isoleucine, valine metabolism | ||
isovalerylcarnitine (C5) | 0.32 ± 0.07 | <0.001 |
2-methylbutyrylcarnitine (C5) | 0.30 ± 0.10 | 0.003 |
Medium-chain fatty acid | ||
palmitoleate (16:1n7) | −0.21 ± 0.10 | 0.043 |
High soluble fiber plus betaine food | ||
Acetylated peptides | ||
phenylacetylglycine | 0.41 ± 0.19 | 0.037 |
Fatty acid, branched-chain amino acid metabolism | ||
propionylglycine (C3) | 0.52 ± 0.18 | 0.005 |
Food component/plant | ||
dihydrocaffeate sulfate | 1.12 ± 0.45 | 0.017 |
2-oxindole-3-acetate | 0.88 ± 0.35 | 0.015 |
Leucine, isoleucine, valine metabolism | ||
isovalerylcarnitine (C5) | 0.40 ± 0.09 | <0.001 |
2-methylbutyrylcarnitine (C5) | 0.37 ± 0.14 | 0.015 |
Long-chain polyunsaturated fatty acid (n3 and n6) | ||
docosatrienoate (22:3n6) | −0.58 ± 0.24 | 0.019 |
Medium-chain fatty acid | ||
palmitoleate (16:1n7) | −0.37 ± 0.14 | 0.011 |
5-dodecenoate (12:1n7) | −0.37 ± 0.18 | 0.042 |
Phenylalanine metabolism | ||
4-hydroxyphenylacetate | 0.70 ± 0.25 | 0.007 |
Tryptophan metabolism | ||
indoleacetylglycine | 0.52 ± 0.22 | 0.022 |
Tyrosine metabolism | ||
dopamine 3-O-sulfate | 0.25 ± 0.12 | 0.035 |
Correlation with Serum Creatinine | Correlation with Serum SDMA | |||
---|---|---|---|---|
r | p-Value | r | p-Value | |
creatinine | 0.85 | <0.001 | 0.66 | <0.001 |
N6,N6,N6-trimethyllysine | 0.72 | <0.001 | 0.78 | <0.001 |
N6-carboxymethyllysine | 0.71 | <0.001 | 0.71 | <0.001 |
pseudouridine | 0.71 | <0.001 | 0.86 | <0.001 |
urea | 0.67 | <0.001 | 0.80 | <0.001 |
dopamine 3-O-sulfate | 0.62 | <0.001 | 0.65 | <0.001 |
N-acetylphenylalanine | 0.62 | <0.001 | 0.75 | <0.001 |
2-methylbutyrylcarnitine (C5) | 0.57 | <0.001 | 0.69 | <0.001 |
cystathionine | 0.57 | <0.001 | 0.52 | <0.001 |
isovalerylcarnitine (C5) | 0.56 | <0.001 | 0.66 | <0.001 |
isobutyrylcarnitine (C4) | 0.55 | <0.001 | 0.66 | <0.001 |
hydroxyproline | 0.54 | <0.001 | 0.45 | <0.001 |
dimethylarginine (ADMA + SDMA) | 0.51 | <0.001 | 0.71 | <0.001 |
pyrraline | 0.50 | <0.001 | 0.58 | <0.001 |
4-hydroxyhippurate | 0.44 | <0.001 | 0.35 | <0.001 |
5-hydroxyindoleacetate | 0.41 | <0.001 | 0.54 | <0.001 |
dihydroferulic acid sulfate | 0.39 | <0.001 | 0.37 | <0.001 |
fructosyllysine | 0.39 | <0.001 | 0.51 | <0.001 |
propionylglycine (C3) | 0.39 | <0.001 | 0.40 | <0.001 |
indoleacetylglycine | 0.36 | <0.001 | 0.54 | <0.001 |
N6,N6-dimethyllysine | 0.30 | <0.001 | 0.63 | <0.001 |
3-indoxyl sulfate | 0.26 | 0.001 | 0.37 | <0.001 |
citrulline | 0.26 | 0.001 | 0.42 | <0.001 |
trimethylamine N-oxide | 0.26 | 0.001 | 0.49 | <0.001 |
docosatrienoate (22:3n6) | −0.20 | 0.009 | −0.32 | <0.001 |
palmitoleate (16:1n7) | −0.20 | 0.012 | −0.35 | <0.001 |
tetradecadienoate (14:2) | −0.26 | 0.001 | −0.39 | <0.001 |
docosahexaenoate (DHA; 22:6n3) | −0.30 | <0.001 | −0.37 | <0.001 |
eicosapentaenoate (EPA; 20:5n3) | −0.30 | <0.001 | −0.46 | <0.001 |
docosapentaenoate (DPA; 22:5n3) | −0.37 | <0.001 | −0.39 | <0.001 |
Study Foods | ||||
---|---|---|---|---|
Control | Low Soluble Fiber plus Betaine | High Soluble Fiber plus Betaine | p-Value | |
pH | 5.60 ± 0.03 | 5.71 ± 0.04 | 5.65 ± 0.04 | 0.095 |
Moisture, % | 74.96 ± 0.33 | 74.62 ± 0.43 | 74.92 ± 0.41 | 0.810 |
Ash, % | 4.46 ± 0.13 | 4.77 ± 0.14 | 4.64 ± 0.29 | 0.520 |
Baseline-End of Treatment ± SE | p-Value | |
---|---|---|
Low soluble fiber plus betaine food | ||
Food component, plant | ||
genistein sulfate | −0.43 ± 0.16 | 0.015 |
Lysine metabolism | ||
fructosyllysine | 0.30 ± 0.15 | 0.045 |
Methionine, cysteine, SAM, taurine metabolism | ||
cystathionine | 0.65 ± 0.29 | 0.029 |
Phenylalanine metabolism | ||
phenylacetate | 0.56 ± 0.28 | 0.050 |
High soluble fiber plus betaine food | ||
Fatty acid, monohydroxy | ||
3-hydroxyoctanoate | −0.20 ± 0.08 | 0.018 |
Food component, plant | ||
genistein sulfate | −1.53 ± 0.31 | <0.001 |
Metabolite | OTU | Estimate ± SE | p-Value | Pearson’s Correlation Coefficient |
---|---|---|---|---|
Plasma | ||||
catechol sulfate | 586453 Christensenellaceae * | −0.38 ± 0.19 | 0.049 | 0.23 |
indolelactate | 1030652 Odoribacter | −0.73 ± 0.32 | 0.026 | 0.26 |
3-methoxycatechol sulfate | 586453 Christensenellaceae * | −0.40 ± 0.17 | 0.022 | 0.26 |
4-vinylguaiacol sulfate | 1030652 Odoribacter | −0.49 ± 0.20 | 0.016 | 0.31 |
Fecal | ||||
4-hydroxybenzoate | 249375 Actinobacteria * | −0.35 ± 0.17 | 0.042 | 0.18 |
indolepropionate | 249375 Actinobacteria * | −0.33 ± 0.14 | 0.016 | 0.21 |
Indolin-2-one | 586453 Christensenellaceae * | −0.20 ± 0.08 | 0.010 | 0.23 |
secoisolariciresinol | 249375 Actinobacteria * | 0.23 ± 0.09 | 0.013 | 0.22 |
secoisolariciresinol | 23706 Collinsella | 0.38 ± 0.19 | 0.051 | 0.10 |
secoisolariciresinol diglucoside | 249375 Actinobacteria * | 0.25 ± 0.10 | 0.013 | 0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ephraim, E.; Jewell, D.E. Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites 2020, 10, 370. https://doi.org/10.3390/metabo10090370
Ephraim E, Jewell DE. Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites. 2020; 10(9):370. https://doi.org/10.3390/metabo10090370
Chicago/Turabian StyleEphraim, Eden, and Dennis E. Jewell. 2020. "Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease" Metabolites 10, no. 9: 370. https://doi.org/10.3390/metabo10090370
APA StyleEphraim, E., & Jewell, D. E. (2020). Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites, 10(9), 370. https://doi.org/10.3390/metabo10090370