Metabolomics Diagnosis of COVID-19 from Exhaled Breath Condensate
Abstract
:1. Introduction
2. Results
2.1. EBC Collection and Clinical Patients’ Characteristics
2.2. EBC Metabolome Is Influenced by SARS-CoV-2 Infection
2.3. Potential EBC Biomarkers of SARS-CoV-2 Infection
2.4. Validation of EBC Biomarkers with CPE and Machine Learning
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Measurements
4.3. EBC Collection
4.4. Materials and Reagents
4.5. Sample Preparation
4.6. GCxGC-TOFMS Analysis
4.7. Statistical and Data Analysis
4.8. Machine Learning Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borczuk, A.C.; Salvatore, S.P.; Seshan, S.V.; Patel, S.S.; Bussel, J.B.; Mostyka, M.; Elsoukkary, S.; He, B.; Del Vecchio, C.; Fortarezza, F.; et al. COVID-19 pulmonary pathology: A multi-institutional autopsy cohort from Italy and New York City. Mod. Pathol. 2020, 33, 2156–2168. [Google Scholar] [CrossRef]
- Gould, O.; Ratcliffe, N.; Król, E.; Costello, B.D.L. Breath analysis for detection of viral infection, the current position of the field. J. Breath. Res. 2020, 14, 041001. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.J.; Weda, H.; Wang, Y.; Knobel, H.H.; Nijsen, T.M.E.; Vink, T.J.; Zwinderman, A.H.; Sterk, P.J.; Schultz, M.J. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur. Respir. 2014, 44, 188–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traxler, S.; Bischoff, A.-C.; Saß, R.; Trefz, P.; Gierschner, P.; Brock, B.; Schwaiger, T.; Karte, C.; Blohm, U.; Schröder, C.; et al. VOC breath profile in spontaneously breathing awake swine during influenza A. infection. Sci. Rep. 2018, 8, 14857. [Google Scholar] [CrossRef]
- Traxler, S.; Barkowsky, G.; Saß, R.; Klemenz, A.-C.; Patenge, N.; Kreikemeyer, B.; Jo, K.; Schubert, J.K.; Miekisch, W. Volatile scents of influenza A and S. pyogenes (co-)infected cells. Sci. Rep. 2019, 9, 18894. [Google Scholar] [CrossRef] [Green Version]
- Mammen, M.J.; Scannapieco, F.A.; Sethi, S. Oral-lung microbiome interactions in lung diseases. Periodontology 2020, 83, 234–241. [Google Scholar] [CrossRef]
- Kumar, D.; Batra, L.; Malik, T.M. Insights of novel coronavirus (SARS-CoV-2) disease outbreak, management and treatment. AIMS Microbiol. 2020, 6, 183–203. [Google Scholar] [CrossRef]
- Ibrahim, W.; Cordell, R.L.; Wilde, M.J.; Richardson, M.; Carr, L.; Devi Dasi, A.S.; Hargadon, B.; Free, R.C.; Monks, P.S.; Brightling, C.E.; et al. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry. ERJ Open Res. 2021, 7, 00139. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.C.; Hu, B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. J. Anal. Test. 2021, 5, 287–297. [Google Scholar] [CrossRef]
- Ruszkiewicz, D.M.; Sanders, D.; O’Brien, R.; Hempel, F.; Reed, M.J.; Riepe, A.C.; Bailie, K.; Brodrick, E.; Darnley, K.; Ellerkmann, R. Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry—A feasibility study. E Clin. Med. 2020, 29–30, 100609. [Google Scholar] [CrossRef]
- Berna, A.Z.; Akaho, E.H.; Harris, R.M.; Congdon, M.; Korn, E.; Neher, S.; M’Farrej, M.; Burns, J.; Odom John, A.R. Reproducible breath metabolite changes in children with SARS-CoV-2 infection. Infect. Dis. 2021, 7, 2596–2603. [Google Scholar] [CrossRef] [PubMed]
- Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn, S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.-J.; et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. E Clin. Med. 2021, 63, 103154. [Google Scholar] [CrossRef] [PubMed]
- Grob, N.M.; Aytekin, M.; Dweik, R.A. Biomarkers in exhaled breath condensate: A review of collection, processing and analysis. J. Bretah Res. 2008, 2, 037004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.-C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [Green Version]
- Maniscalco, M.; Motta, A. Metabolomics of exhaled breath condensate: A means for phenotyping respiratory diseases? Biomark. Med. 2017, 11, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.; Basa-Dalay, V.; Blais, J.; Bothamley, G.; Chaturvedi, A.; Modi, K.D.; Pandya, M.; Natividad, M.P.R.; Patel, U.; Ramraje, N.N.; et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis 2012, 92, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, W.; Beer, R.; Sponring, A.; Filipiak, A.; Ager, C.; Schiefecker, A.; Lanthaler, S.; Helbok, R.; Nagl, M.; Troppmair, J.; et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: A prospective pilot study. J. Breath Res. 2015, 9, 016004. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Thormar, H.; Isaacs, C.E.; Brown, H.R.; Barshatzky, M.R.; Pessolano, T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Animicrob. Agents Chemother. 1987, 31, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Goldman, A.S.; Chheda, S.; Keeney, S.E.; Schmalstieg, F.C. Immunology of human milk and host immunity. Fetal Neonatal. Physiol. 2011, 1690–1701. [Google Scholar] [CrossRef]
- Peralbo-Molina, A.; Calderón-Santiago, M.; Jurado-Gámez, B.; Luque de Castro, M.D.; Priego-Capote, F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC–TOF/MS. Sci. Rep. 2017, 7, 1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralbo-Molina, A.; Calderón-Santiago, M.; Priego-Capote, F.; Jurado-Gámez, B.; Luque de Castro, M.D. Metabolomics analysis of exhaled breath condensate for discrimination between lung cancer patients and risk factor individuals. J. Breath Res. 2016, 10, 016011. [Google Scholar] [CrossRef] [PubMed]
- Barberis, E.; Amede, E.; Tavecchia, M.; Marengo, E.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R.; Tonello, S.; Minisini, R.; Pirisi, M.; et al. Understanding protection from SARS-CoV-2 using metabolomics. Sci. Rep. 2021, 11, 13796. [Google Scholar] [CrossRef]
- Jackman, J.A.; Hakobyan, A.; Zakayan, H.; Elrod, C.C. Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate. J. Anim. Sci. Biotechnol. 2020, 11, 114. [Google Scholar] [CrossRef]
- Lerner, A.B.; Cochrane, R.A.; Gebhardt, J.T.; Dritz, S.S.; Jones, C.K.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Bai, J.; Porter, E.; et al. Effects of medium chain fatty acids as a mitigation or prevention strategy against porcine epidemic diarrhea virus in swine feed. J. Anim Sci. 2020, 98, skaa159. [Google Scholar] [CrossRef]
- Hilmarsson, H.; Traustason, B.S.; Kristmundsdóttir, T.; Thormar, H. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: Comparison at different pH levels. Arch. Virol. 2007, 152, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Coonrod, J.D.; Lester, R.L.; Hsu, L.C. Characterization of the extracellular bactericidal factors of rat alveolar lining material. J. Clin. Investig. 1984, 74, 1269–1279. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, Y.G.; Fotso, M.; Chang, C.-H.; Rindt, H.; Reinero, C.R.; Van Doren, S.R. Noninvasive recognition and biomarkers of early allergic asthma in cats using multivariate statistical analysis of NMR spectra of exhaled breath condensate. PLoS ONE 2016, 11, e0164394. [Google Scholar] [CrossRef]
- Barberis, E.; Manfredi, M.; Marengo, E.; Zilberstein, G.; Zilberstein, S.; Kossolapov, A.; Righetti, P.G. Leonardo’s Donna Nuda unveiled. J. Proteom. 2019, 207, 103450. [Google Scholar] [CrossRef]
- Barberis, E.; Joseph, S.; Amede, E.; Clavenna, M.G.; La Vecchia, M.; Sculco, M.; Aspesi, A.; Occhipinti, P.; Robotti, E.; Boldorini, R.; et al. A new method for investigating microbiota-produced small molecules in adenomatous polyps. Anal. Chim. Acta 2021, 1179, 338841. [Google Scholar] [CrossRef]
- Manfredi, M.; Robotti, E.; Bearman, G.; France, F.; Barberis, E.; Shor, P.; Marengo, E. Direct Analysis in Real Time Mass Spectrometry for the Non-destructive Investigation of Conservation Treatments of Cultural Heritage. J. Anal. Methods Chem. 2016, 2016, 6853591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredi, M.; Barberis, E.; Marengo, E. Prediction and classification of the degradation state of plastic materials used in modern and contemporary art. Appl. Phys. A Mater. Sci. Process. 2017, 123, 35. [Google Scholar] [CrossRef]
Healthy Volunteers n = 20 | CPE n = 11 | COVID-19 n = 26 | |
---|---|---|---|
Age, years | 39 (29–49) | 70 (66–76) | 54 (48–64) |
Sex | M: 8 (40%) F: 12 (60%) | M: 6 (55%) F: 5 (45%) | M: 14 (54%) F: 12 (46%) |
Weight, kg | 61 (57–66) | 80 (76–86) | 75 (70–87) |
Height, cm | 170 (163–181) | 170 (165–178) | 168 (162–175) |
EBC Volume, μL | 825 (500–1050) | 1130 (300–1200) | 800 (500–1110) |
ATS score (severe pneumonia) | / | / | 8 |
SpO2, % | / | 97 (96–98) | 96 (96–97) |
FiO2, % | / | 21 (21–21) | 29 (21–50) |
Respiratory rate, breath/min | / | 15 (10–16) | 16 (15–18) |
PaO2/FiO2, mmHg | / | 330 (244–401) | 277 (241–338) |
Comorbidities | |||
Smoker | 0 | 7 (54%) | 3 (11%) |
Ischemic cardiomyopathy | 0 | 5 (38%) | 2 (8%) |
Valvulopathy | 0 | 4 (31%) | 1 (4%) |
Hypertension | 0 | 7 (54%) | 8 (31%) |
Obesity | 0 | 3 (23%) | 3 (11%) |
Diabetes | 0 | 4 (31%) | 3 (11%) |
Chronic respiratory failure | 1 (6%) | 3 (23%) | 2 (8%) |
Chronic renal failure | 0 | 2 (15%) | 0 |
Lab results at hospital admission | |||
White blood cell count, ×103/μL | / | 9.45 (7.32–11.86) | 6.795 (5.28–9.62) |
Lymphocyte count, ×103/μL | / | 1.82 (1.01–3.26) | 0.97 (0.61–1.3) |
Lactate dehydrogenase, U/L | / | 423 (369–549) | 547 (409–759) |
D-dimer, μgFEU/L | / | 805 (350–5201) | 703 (487–1197) |
Platelet count, ×103/μL | / | 247 (191–306) | 220 (181–275) |
Ferritin, ng/mL | / | 40 (18–312) | 294 (156–757) |
Length of hospital stay, days | / | 11 (7–26) | 7 (5–10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barberis, E.; Amede, E.; Khoso, S.; Castello, L.; Sainaghi, P.P.; Bellan, M.; Balbo, P.E.; Patti, G.; Brustia, D.; Giordano, M.; et al. Metabolomics Diagnosis of COVID-19 from Exhaled Breath Condensate. Metabolites 2021, 11, 847. https://doi.org/10.3390/metabo11120847
Barberis E, Amede E, Khoso S, Castello L, Sainaghi PP, Bellan M, Balbo PE, Patti G, Brustia D, Giordano M, et al. Metabolomics Diagnosis of COVID-19 from Exhaled Breath Condensate. Metabolites. 2021; 11(12):847. https://doi.org/10.3390/metabo11120847
Chicago/Turabian StyleBarberis, Elettra, Elia Amede, Shahzaib Khoso, Luigi Castello, Pier Paolo Sainaghi, Mattia Bellan, Piero Emilio Balbo, Giuseppe Patti, Diego Brustia, Mara Giordano, and et al. 2021. "Metabolomics Diagnosis of COVID-19 from Exhaled Breath Condensate" Metabolites 11, no. 12: 847. https://doi.org/10.3390/metabo11120847
APA StyleBarberis, E., Amede, E., Khoso, S., Castello, L., Sainaghi, P. P., Bellan, M., Balbo, P. E., Patti, G., Brustia, D., Giordano, M., Rolla, R., Chiocchetti, A., Romani, G., Manfredi, M., & Vaschetto, R. (2021). Metabolomics Diagnosis of COVID-19 from Exhaled Breath Condensate. Metabolites, 11(12), 847. https://doi.org/10.3390/metabo11120847