Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath
Abstract
:1. Introduction
2. Results
2.1. Volatile Flux in Cellular Headspace
2.2. Volatile Profiles by Cell Type
2.2.1. Headspace Volatiles Differ between Breast and Kidney Derived Cells
2.2.2. Headspace Volatiles Differ between Cancer and Noncancer Breast Epithelial Cells
2.2.3. Headspace Volatiles Differ between Cancer and Noncancer Kidney-Derived Cells
2.3. Effects of Chemotherapeutic Agent, Doxorubicin, upon Cellular Volatile Profiles
2.4. Breath and Faecal Volatiles from Mice
3. Discussion
3.1. Cellular Volatiles and Metabolisms
3.2. Mouse Volatiles
4. Materials and Methods
4.1. Cell Culture and Treatment Conditions
4.2. Headspace and Breath Sampling
4.2.1. Cellular Headspace Sampling
4.2.2. Mouse Headspace Sampling
4.3. GC-MS, Calibration and Peak Analysis
4.4. Molecular Assays
4.4.1. Sulphorhodamine B Assay
4.4.2. MTT Assay
4.4.3. Trypan Blue Exclusion Assay
4.5. Data Analysis
4.6. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amann, A.; de Lacy Costello, B.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The Human Volatilome: Volatile Organic Compounds (VOCs) in Exhaled Breath, Skin Emanations, Urine, Feces and Saliva. J. Breath Res. 2014, 8, 34001. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; De Lacy Costello, B. A Literature Survey of All Volatiles from Healthy Human Breath and Bodily Fluids: The Human Volatilome. J. Breath Res. 2021, 15, 34001. [Google Scholar] [CrossRef] [PubMed]
- Issitt, T.; Wiggins, L.; Veysey, M.; Sweeney, S.; Brackenbury, W.; Redeker, K. Volatile Compounds in Human Breath: Critical Review and Meta-Analysis. J. Breath Res. 2022, 16, 24001. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, L.; Smolinska, A.; Baranska, A.; Tigchelaar, E.; Swertz, M.; Zhernakova, A.; Dallinga, J.W.; Wijmenga, C.; van Schooten, F.J. Factors That Influence the Volatile Organic Compound Content in Human Breath. J. Breath Res. 2017, 11, 16013. [Google Scholar] [CrossRef]
- Lawal, O.; Ahmed, W.M.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Exhaled Breath Analysis: A Review of “Breath-Taking” Methods for off-Line Analysis. Metabolomics 2017, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Bruderer, T.; Gaisl, T.; Gaugg, M.T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, A.; Kohler, M.; Zenobi, R. On-Line Analysis of Exhaled Breath Focus Review. Chem. Rev. 2019, 119, 10803–10828. [Google Scholar] [CrossRef]
- Hanna, G.B.; Boshier, P.R.; Markar, S.R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis. JAMA Oncol. 2019, 5, e182815. [Google Scholar] [CrossRef] [Green Version]
- Shibamoto, T. Analytical Methods for Trace Levels of Reactive Carbonyl Compounds Formed in Lipid Peroxidation Systems. J. Pharm. Biomed. Anal. 2006, 41, 12–25. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Duan, Y. Effect of H2O2 Induced Oxidative Stress (OS) on Volatile Organic Compounds (VOCs) and Intracellular Metabolism in MCF-7 Breast Cancer Cells. J. Breath Res. 2019, 13, 36005. [Google Scholar] [CrossRef]
- Hanouneh, I.A.; Zein, N.N.; Cikach, F.; Dababneh, L.; Grove, D.; Alkhouri, N.; Lopez, R.; Dweik, R.A. The Breathprints in Patients with Liver Disease Identify Novel Breath Biomarkers in Alcoholic Hepatitis. Clin. Gastroenterol. Hepatol. 2014, 12, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Di Gilio, A.; Palmisani, J.; Ventrella, G.; Facchini, L.; Catino, A.; Varesano, N.; Pizzutilo, P.; Galetta, D.; Borelli, M.; Barbieri, P.; et al. Breath Analysis: Comparison among Methodological Approaches for Breath Sampling. Molecules 2020, 25, 5823. [Google Scholar] [CrossRef] [PubMed]
- Doran, S.L.F.; Romano, A.; Hanna, G.B. Optimisation of Sampling Parameters for Standardised Exhaled Breath Sampling. J. Breath Res. 2017, 12, 16007. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Pal, S.; Mitra, M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J. Med. Biol. Eng. 2016, 36, 605–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, A.; Suijo, K.; Kondo, T.; Hotta, N. Breath Isoprene Excretion during Rest and Low-Intensity Cycling Exercise Is Associated with Skeletal Muscle Mass in Healthy Human Subjects. J. Breath Res. 2020, 15, 16009. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, M.E.; Fernández Del Río, R.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A. Limonene in Exhaled Breath Is Elevated in Hepatic Encephalopathy. J. Breath Res. 2016, 10, 46010. [Google Scholar] [CrossRef]
- Feinberg, T.; Herbig, J.; Kohl, I.; Las, G.; Cancilla, J.C.; Torrecilla, J.S.; Ilouze, M.; Haick, H.; Peled, N. Cancer Metabolism: The Volatile Signature of Glycolysis—in Vitro Model in Lung Cancer Cells. J. Breath Res. 2017, 11, 16008. [Google Scholar] [CrossRef]
- Sreedhar, A.; Zhao, Y. Dysregulated Metabolic Enzymes and Metabolic Reprogramming in Cancer Cells. Biomed. Rep. 2018, 8, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Issitt, T.; Bosseboeuf, E.; De Winter, N.; Dufton, N.; Gestri, G.; Senatore, V.; Chikh, A.; Randi, A.M.; Raimondi, C. Neuropilin-1 Controls Endothelial Homeostasis by Regulating Mitochondrial Function and Iron-Dependent Oxidative Stress. iScience 2019, 11, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Statheropoulos, M.; Agapiou, A.; Georgiadou, A. Analysis of Expired Air of Fasting Male Monks at Mount Athos. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 832, 274–279. [Google Scholar] [CrossRef]
- Krilaviciute, A.; Leja, M.; Kopp-Schneider, A.; Barash, O.; Khatib, S.; Amal, H.; Broza, Y.Y.; Polaka, I.; Parshutin, S.; Rudule, A.; et al. Associations of Diet and Lifestyle Factors with Common Volatile Organic Compounds in Exhaled Breath of Average-Risk Individuals. J. Breath Res. 2019, 13, 26006. [Google Scholar] [CrossRef]
- Wilkinson, M.; Maidstone, R.; Loudon, A.; Blaikley, J.; White, I.R.; Singh, D.; Ray, D.W.; Goodacre, R.; Fowler, S.J.; Durrington, H.J. Circadian Rhythm of Exhaled Biomarkers in Health and Asthma. Eur. Respir. J. 2019, 54, 1901068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipiak, W.; Mochalski, P.; Filipiak, A.; Ager, C.; Cumeras, R.; Davis, C.E.; Agapiou, A.; Unterkofler, K.; Troppmair, J. A Compendium of Volatile Organic Compounds (VOCs) Released by Human Cell Lines. Curr. Med. Chem. 2016, 23, 2112–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochalski, P.; Sponring, A.; King, J.; Unterkofler, K.; Troppmair, J.; Amann, A. Release and Uptake of Volatile Organic Compounds by Human Hepatocellular Carcinoma Cells (HepG2) in Vitro. Cancer Cell Int. 2013, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiherer, A.; Ślefarska, D.; Leja, M.; Heinzle, C.; Mündlein, A.; Kikuste, I.; Mezmale, L.; Drexel, H.; Mayhew, C.A.; Mochalski, P. The Volatilomic Footprints of Human HGC-27 and CLS-145 Gastric Cancer Cell Lines. Front. Mol. Biosci. 2020, 7, 607904. [Google Scholar] [CrossRef] [PubMed]
- Lavra, L.; Catini, A.; Ulivieri, A.; Capuano, R.; Baghernajad Salehi, L.; Sciacchitano, S.; Bartolazzi, A.; Nardis, S.; Paolesse, R.; Martinelli, E.; et al. Investigation of VOCs Associated with Different Characteristics of Breast Cancer Cells. Sci. Rep. 2015, 5, 13246. [Google Scholar] [CrossRef] [Green Version]
- Filipiak, W.; Sponring, A.; Filipiak, A.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. TD-GC-MS Analysis of Volatile Metabolites of Human Lung Cancer and Normal Cells in Vitro. Cancer Epidemiol. Biomark. Prev. 2010, 19, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Klemenz, A.-C.; Meyer, J.; Ekat, K.; Bartels, J.; Traxler, S.; Schubert, J.K.; Kamp, G.; Miekisch, W.; Peters, K. Differences in the Emission of Volatile Organic Compounds (VOCs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue. Cells 2019, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- Mochalski, P.; Theurl, M.; Sponring, A.; Unterkofler, K.; Kirchmair, R.; Amann, A. Analysis of Volatile Organic Compounds Liberated and Metabolised by Human Umbilical Vein Endothelial Cells (HUVEC) in Vitro. Cell Biochem. Biophys. 2015, 71, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Gerritsen, M.G.; Brinkman, P.; Escobar, N.; Bos, L.D.; de Heer, K.; Meijer, M.; Janssen, H.-G.; de Cock, H.; Wösten, H.A.B.; Visser, C.E.; et al. Profiling of Volatile Organic Compounds Produced by Clinical Aspergillus Isolates Using Gas Chromatography-Mass Spectrometry. Med. Mycol. 2018, 56, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Shahi, F.; Forrester, S.; Redeker, K.; Chong, J.P.J.; Barlow, G. Case Report: The Effect of Intravenous and Oral Antibiotics on the Gut Microbiome and Breath Volatile Organic Compounds over One Year. Wellcome Open Res. 2022, 7, 50. [Google Scholar] [CrossRef]
- Silva, C.L.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Volatile Metabolomic Signature of Human Breast Cancer Cell Lines. Sci. Rep. 2017, 7, 43969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Shu, J.; Yang, B.; Xu, C.; Zou, Y.; Sun, W. Evaluating the Relationship between Cell Viability and Volatile Organic Compound Production Following DMSO Treatment of Cultured Human Cells. Pharmazie 2016, 71, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Constan, A.A.; Sprankle, C.S.; Peters, J.M.; Kedderis, G.L.; Everitt, J.I.; Wong, B.A.; Gonzalez, F.L.; Butterworth, B.E. Metabolism of Chloroform by Cytochrome P450 2E1 Is Required for Induction of Toxicity in the Liver, Kidney, and Nose of Male Mice. Toxicol. Appl. Pharmacol. 1999, 160, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Redford-Ellis, M.; Gowenlock, A.H. Studies on the Reaction of Chloromethane with Human Blood. Acta Pharmacol. Toxicol. 1971, 30, 36–48. [Google Scholar] [CrossRef]
- Hallier, E.; Deutschmann, S.; Reichel, C.; Bolt, H.M.; Peter, H. A Comparative Investigation of the Metabolism of Methyl Bromide and Methyl Iodide in Human Erythrocytes. Int. Arch. Occup. Environ. Health 1990, 62, 221–225. [Google Scholar] [CrossRef]
- Peter, H.; Deutschmann, S.; Reichel, C.; Hallier, E. Metabolism of Methyl Chloride by Human Erythrocytes. Arch. Toxicol. 1989, 63, 351–355. [Google Scholar] [CrossRef]
- Manley, S.L. Phytogenesis of Halomethanes: A Product Ofselection or a Metabolic Accident? Biogeochemistry 2002, 60, 163–180. [Google Scholar] [CrossRef]
- Bolt, H.M.; Gansewendt, B. Mechanisms of Carcinogenicity of Methyl Halides. Crit. Rev. Toxicol. 1993, 23, 237–253. [Google Scholar] [CrossRef]
- Environment Protection Agency, A Chronic Inhalation Toxicology Study of in Rats and Mice Exposed to Methyl Chloride; Chemical Industry Institute of Toxicology: Durham, NC, USA, 1982.
- Hallier, E.; Jaeger, R.; Deutschmann, S.; Bolt, H.M.; Peter, H. Glutathione Conjugation and Cytochrome P-450 Metabolism of Methyl Chloride in Vitro. Toxicol. In Vitro 1990, 4, 513–517. [Google Scholar] [CrossRef]
- Carrión, O.; Pratscher, J.; Curson, A.R.J.; Williams, B.T.; Rostant, W.G.; Murrell, J.C.; Todd, J.D. Methanethiol-Dependent Dimethylsulfide Production in Soil Environments. ISME J. 2017, 11, 2379–2390. [Google Scholar] [CrossRef] [Green Version]
- Carrión, O.; Pratscher, J.; Richa, K.; Rostant, W.G.; Farhan Ul Haque, M.; Murrell, J.C.; Todd, J.D. Methanethiol and Dimethylsulfide Cycling in Stiffkey Saltmarsh. Front. Microbiol. 2019, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- Arts, J.; Kellert, M.; Pottenger, L.; Theuns-van Vliet, J. Evaluation of Developmental Toxicity of Methyl Chloride (Chloromethane) in Rats, Mice, and Rabbits. Regul. Toxicol. Pharmacol. 2019, 103, 274–281. [Google Scholar] [CrossRef]
- De Vincentis, A.; Vespasiani-Gentilucci, U.; Sabatini, A.; Antonelli-Incalzi, R.; Picardi, A. Exhaled Breath Analysis in Hepatology: State-of-the-Art and Perspectives. World J. Gastroenterol. 2019, 25, 4043–4050. [Google Scholar] [CrossRef] [PubMed]
- Schivo, M.; Aksenov, A.A.; Linderholm, A.L.; McCartney, M.M.; Simmons, J.; Harper, R.W.; Davis, C.E. Volatile Emanations from in Vitro Airway Cells Infected with Human Rhinovirus. J. Breath Res. 2014, 8, 37110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. World Health Organ. Tech. Rep. Ser. 1985, 724, 1–206. [Google Scholar]
- King, J.; Mochalski, P.; Unterkofler, K.; Teschl, G.; Klieber, M.; Stein, M.; Amann, A.; Baumann, M. Breath Isoprene: Muscle Dystrophy Patients Support the Concept of a Pool of Isoprene in the Periphery of the Human Body. Biochem. Biophys. Res. Commun. 2012, 423, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.; Jeter, R.; Bachmann, A.; Yount, S.T.; Shen, C.-L.; Yeganehjoo, H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front. Pharmacol. 2019, 9, 1515. [Google Scholar] [CrossRef] [Green Version]
- Calenic, B.; Miricescu, D.; Greabu, M.; Kuznetsov, A.V.; Troppmair, J.; Ruzsanyi, V.; Amann, A. Oxidative Stress and Volatile Organic Compounds: Interplay in Pulmonary, Cardio-Vascular, Digestive Tract Systems and Cancer. Open Chem. 2015, 13, 1020–1030. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Cummin, A.R.C.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of Lung Cancer with Volatile Markers in the Breath. Chest 2003, 123, 2115–2123. [Google Scholar] [CrossRef] [Green Version]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath Biomarkers for Lung Cancer Detection and Assessment of Smoking Related Effects--Confounding Variables, Influence of Normalization and Statistical Algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef]
- Sponring, A.; Filipiak, W.; Mikoviny, T.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. Release of Volatile Organic Compounds from the Lung Cancer Cell Line NCI-H2087 in Vitro. Anticancer Res. 2009, 29, 419–426. [Google Scholar] [PubMed]
- Schallschmidt, K.; Becker, R.; Zwaka, H.; Menzel, R.; Johnen, D.; Fischer-Tenhagen, C.; Rolff, J.; Nehls, I. In Vitro Cultured Lung Cancer Cells Are Not Suitable for Animal-Based Breath Biomarker Detection. J. Breath Res. 2015, 9, 27103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schallschmidt, K.; Becker, R.; Jung, C.; Rolff, J.; Fichtner, I.; Nehls, I. Investigation of Cell Culture Volatilomes Using Solid Phase Micro Extraction: Options and Pitfalls Exemplified with Adenocarcinoma Cell Lines. J. Chromatogr. B 2015, 1006, 158–166. [Google Scholar] [CrossRef]
- Phillips, M.; Boehmer, J.P.; Cataneo, R.N.; Cheema, T.; Eisen, H.J.; Fallon, J.T.; Fisher, P.E.; Gass, A.; Greenberg, J.; Kobashigawa, J.; et al. Heart Allograft Rejection: Detection with Breath Alkanes in Low Levels (the HARDBALL Study). J. Heart Lung Transpl. 2004, 23, 701–708. [Google Scholar] [CrossRef] [PubMed]
- You, R.; Dai, J.; Zhang, P.; Barding, G.A., Jr.; Raftery, D. Dynamic Metabolic Response to Adriamycin-Induced Senescence in Breast Cancer Cells. Metabolites 2018, 8, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-On, O.; Shapira, M.; Hershko, D.D. Differential Effects of Doxorubicin Treatment on Cell Cycle Arrest and Skp2 Expression in Breast Cancer Cells. Anticancer Drugs 2007, 18, 1113–1121. [Google Scholar] [CrossRef]
- Kwak, J.; Gallagher, M.; Ozdener, M.H.; Wysocki, C.J.; Goldsmith, B.R.; Isamah, A.; Faranda, A.; Fakharzadeh, S.S.; Herlyn, M.; Johnson, A.T.C.; et al. Volatile Biomarkers from Human Melanoma Cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 931, 90–96. [Google Scholar] [CrossRef]
- Lim, R.; Zavou, M.J.; Milton, P.-L.; Chan, S.T.; Tan, J.L.; Dickinson, H.; Murphy, S.V.; Jenkin, G.; Wallace, E.M. Measuring Respiratory Function in Mice Using Unrestrained Whole-Body Plethysmography. J. Vis. Exp. 2014, 90, e51755. [Google Scholar] [CrossRef] [Green Version]
- Noble, D.J.; Goolsby, W.N.; Garraway, S.M.; Martin, K.K.; Hochman, S. Slow Breathing Can Be Operantly Conditioned in the Rat and May Reduce Sensitivity to Experimental Stressors. Front. Physiol. 2017, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Inao, T.; Kotani, H.; Iida, Y.; Kartika, I.D.; Okimoto, T.; Tanino, R.; Shiba, E.; Harada, M. Different Sensitivities of Senescent Breast Cancer Cells to Immune Cell-Mediated Cytotoxicity. Cancer Sci. 2019, 110, 2690–2699. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar]
- Redeker, K.R.; Davis, S.; Kalin, R.M. Isotope Values of Atmospheric Halocarbons and Hydrocarbons from Irish Urban, Rural, and Marine Locations. J. Geophys. Res. 2007, 112, D16307. [Google Scholar] [CrossRef] [Green Version]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef]
- Jia, Z.; Patra, A.; Kutty, V.K.; Venkatesan, T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issitt, T.; Sweeney, S.T.; Brackenbury, W.J.; Redeker, K.R. Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites 2022, 12, 599. https://doi.org/10.3390/metabo12070599
Issitt T, Sweeney ST, Brackenbury WJ, Redeker KR. Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites. 2022; 12(7):599. https://doi.org/10.3390/metabo12070599
Chicago/Turabian StyleIssitt, Theo, Sean T. Sweeney, William J. Brackenbury, and Kelly R. Redeker. 2022. "Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath" Metabolites 12, no. 7: 599. https://doi.org/10.3390/metabo12070599
APA StyleIssitt, T., Sweeney, S. T., Brackenbury, W. J., & Redeker, K. R. (2022). Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites, 12(7), 599. https://doi.org/10.3390/metabo12070599