Utilizing the Food–Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bacterial Enrichments
2.2. Spinach Enrichments
2.3. Interaction between Spinach and Pathogenic E. coli Metabolomes for Pathway Mapping
2.4. Pathogenic E. coli Biomarker Analysis in Spinach
3. Materials and Methods
3.1. Bacterial Strains and Culture Media
3.2. Sample Preparation
3.2.1. Bacterial Enrichments
3.2.2. Spinach Enrichments
3.3. Metabolomic Analysis
3.3.1. Preparation of Cell Pellet for Metabolomic Analysis
3.3.2. Preparation of Cell Media for Metabolomic Analysis
3.3.3. Metabolite Extraction
3.3.4. GC-MS Analysis
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 20 August 2020).
- Newell, D.G.; La Ragione, R. Enterohaemorrhagic and other Shiga toxin-producingEscherichia coli(STEC): Where are we now regarding diagnostics and control strategies? Transbound. Emerg. Dis. 2018, 65 (Suppl. 1), 49–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellor, G.E.; Fegan, N.; Duffy, L.; McMillan, K.E.; Jordan, D.; Barlow, R. National Survey of Shiga Toxin–Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. J. Food Prot. 2016, 79, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Kintz, E.; Byrne, L.; Jenkins, C.; McCarthy, N.; Vivancos, R.; Hunter, P.R. Outbreaks of Shiga Toxin–Producing Escherichia coli Linked to Sprouted Seeds, Salad, and Leafy Greens: A Systematic Review. J. Food Prot. 2019, 82, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach. Appl. Environ. Microbiol. 2015, 81, 8183–8191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. FDA. 2020 Leafy Greens STEC Action Plan. Available online: https://www.fda.gov/food/foodborne-pathogens/2020-leafy-greens-stec-action-plan (accessed on 15 July 2020).
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing. PLoS ONE 2016, 11, e0167870. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R. Early detection of food pathogens and food spoilage microorganisms: Application of metabolomics. Trends Food Sci. Technol. 2016, 54, 213–215. [Google Scholar] [CrossRef]
- Singh, A.; Ulanov, A.; Li, Z.; Jayaswal, R.K.; Wilkinson, B.J. Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 °C and 8 °C. Int. J. Food Microbiol. 2011, 148, 107–114. [Google Scholar] [CrossRef]
- Beale, D.J.; Morrison, P.; Palombo, E.A. Detection of Listeria in milk using non-targeted metabolic profiling of Listeria monocytogenes: A proof-of-concept application. Food Control. 2014, 42, 343–346. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Danyluk, M.D.; Reyes-De-Corcuera, J.I. GC-MS Based Metabolomics for Rapid Simultaneous Detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in Ground Beef and Chicken. J. Food Sci. 2011, 76, M238–M246. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J. Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level. Rapid Commun. Mass Spectrom. 2017, 31, 1669–1676. [Google Scholar] [CrossRef]
- Jadhav, S.R.; Shah, R.M.; Karpe, A.V.; Morrison, P.D.; Kouremenos, K.; Beale, D.J.; Palombo, E.A. Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches. Front. Microbiol. 2018, 9, 3132. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated With Fresh Produce From 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunderlichová, L.; Buňková, L.; Koutný, M.; Jančová, P.; Buňka, F. Formation, Degradation, and Detoxification of Putrescine by Foodborne Bacteria: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1012–1030. [Google Scholar] [CrossRef]
- Shen, Y.-P.; Fong, L.S.; Yan, Z.-B.; Liu, J.-Z. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli. Biotechnol. Biofuels 2019, 12, 94. [Google Scholar] [CrossRef]
- Yun, E.J.; Lee, S.H.; Kim, S.; Kim, S.H.; Kim, K.H. Global profiling of metabolic response of Caenorhabditis elegans against Escherichia coli O157:H7. Process. Biochem. 2017, 53, 36–43. [Google Scholar] [CrossRef]
- Candrian, U.; Furrer, B.; Höfelein, C.; Lüthy, J. Use of inosine-containing oligonucleotide primers for enzymatic amplification of different alleles of the gene coding for heat-stable toxin type I of enterotoxigenic Escherichia coli. Appl. Environ. Microbiol. 1991, 57, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Menni, F.; Testa, S.; Guez, S.; Chiarelli, G.; Alberti, L.; Esposito, S. Neonatal atypical hemolytic uremic syndrome due to methylmalonic aciduria and homocystinuria. Pediatr. Nephrol. 2012, 27, 1401–1405. [Google Scholar] [CrossRef]
- Paton, A.W.; Paton, J.C. Detection and Characterization of Shiga Toxigenic Escherichia coli by Using Multiplex PCR Assays for stx1, stx2, eaeA, Enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J. Clin. Microbiol. 1998, 36, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Beale, D.J.; Oh, D.Y.; Karpe, A.V.; Tai, C.; Dunn, M.S.; Tilmanis, D.; Palombo, E.A.; Hurt, A.C. Untargeted metabolomics analysis of the upper respiratory tract of ferrets following influenza A virus infection and oseltamivir treatment. Metabolomics 2019, 15, 33. [Google Scholar] [CrossRef]
- Triba, M.N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D.N.; Savarin, P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. BioSyst. 2015, 11, 13–19. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barupal, D.K.; Fiehn, O. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
Category | Isolates | Serogroups | Virulence Profiles | Risk Grouping (RG) |
---|---|---|---|---|
Top7 STEC | EC 1543, 2941, 2996a, 2997a, 4399a, 4400a, 4412a, 4419a, 4433a, and 5054a | O157, O26, O45, O103, O111, O121, and O145 | stx1, stx2 and eae; stx1 and eae; stx2 and eae | 1 |
Non-Top7 STEC | EC 3633a, 3639a, and 3683a | O84, O177, and O182 | stx1, stx2 and eae; stx1 and eae | 2 |
pEHEC/aEPEC | EC 801, 1646a, 3989a, and 4560a | O26, O103 and O145 | Eae only | 2 |
Eae-negative STEC | EC 4742a, 4819c, and 4852b | Unknown | stx1 and stx2; stx1 only | 3 |
Generic E. coli | Five cattle isolates | Unknown | NA | Negative |
Salmonella | Five cattle isolates | Unknown | NA | Negative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, S.R.; Shah, R.M.; Karpe, A.V.; Barlow, R.S.; McMillan, K.E.; Colgrave, M.L.; Beale, D.J. Utilizing the Food–Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach. Metabolites 2021, 11, 67. https://doi.org/10.3390/metabo11020067
Jadhav SR, Shah RM, Karpe AV, Barlow RS, McMillan KE, Colgrave ML, Beale DJ. Utilizing the Food–Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach. Metabolites. 2021; 11(2):67. https://doi.org/10.3390/metabo11020067
Chicago/Turabian StyleJadhav, Snehal R., Rohan M. Shah, Avinash V. Karpe, Robert S. Barlow, Kate E. McMillan, Michelle L. Colgrave, and David J. Beale. 2021. "Utilizing the Food–Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach" Metabolites 11, no. 2: 67. https://doi.org/10.3390/metabo11020067
APA StyleJadhav, S. R., Shah, R. M., Karpe, A. V., Barlow, R. S., McMillan, K. E., Colgrave, M. L., & Beale, D. J. (2021). Utilizing the Food–Pathogen Metabolome to Putatively Identify Biomarkers for the Detection of Shiga Toxin-Producing E. coli (STEC) from Spinach. Metabolites, 11(2), 67. https://doi.org/10.3390/metabo11020067