Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats
Abstract
:1. Introduction
2. Results
2.1. CDH Fetal Lungs Have a Different Metabolic Profile
2.2. Effect of CDH in Fetal Lung Metabolism (NCDH vs. VC)
2.3. Effect of Lung Compression on the Fetal Lung Metabolism (NCDH vs. NC)
2.4. Metabolic Pathways Analysis
3. Discussion
4. Materials and Methods
4.1. Tissue Collection
4.2. NMR Sample Preparation
4.3. Spectra Acquisition
4.4. Metabolites’ Assignments and Quantification
4.5. Statistical Analysis
4.6. Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harting, M.T. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin. Pediatr. Surg. 2017, 26, 147–153. [Google Scholar] [CrossRef]
- Balayla, J.; Abenhaim, H.A. Incidence, predictors and outcomes of congenital diaphragmatic hernia: A population-based study of 32 million births in the United States. J. Matern. Fetal Neonatal Med. 2014, 27, 1438–1444. [Google Scholar] [CrossRef]
- Zaiss, I.; Kehl, S.; Link, K.; Neff, W.; Schaible, T.; Sütterlin, M.; Siemer, J. Associated malformations in congenital diaphragmatic hernia. Am. J. Perinatol. 2011, 28, 211–218. [Google Scholar] [CrossRef]
- Fauza, D.O.; Wilson, J.M. Congenital diaphragmatic hernia and associated anomalies: Their incidence, identification, and impact on prognosis. J. Pediatr. Surg. 1994, 29, 1113–1117. [Google Scholar] [CrossRef]
- Stoll, C.; Alembik, Y.; Dott, B.; Roth, M.-P. Associated malformations in cases with congenital diaphragmatic hernia. Genet. Couns. 2008, 19, 331–339. [Google Scholar]
- Leeuwen, L.; Fitzgerald, D.A. Congenital diaphragmatic hernia. J. Paediatr. Child Health 2014, 50, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Koziarkiewicz, M.; Taczalska, A.; Piaseczna-Piotrowska, A. Long-term follow-up of children with congenital diaphragmatic hernia—Observations from a single institution. Eur. J. Pediatr. Surg. 2014, 24, 500–507. [Google Scholar] [PubMed]
- Lim, G.; Johari, Y.; Ooi, G.; Playfair, J.; Laurie, C.; Hebbard, G.; Brown, W.; Burton, P. Diagnostic Criteria for Gastro-esophageal Reflux Following Sleeve Gastrectomy. Obes. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, J.P.; Steinhorn, R.H.; Mullen, M.P.; Hopper, R.K.; Keller, R.L.; Ivy, D.D.; Austin, E.D.; Krishnan, U.S.; Rosenzweig, E.B.; Fineman, J.R.; et al. The Left Ventricle in Congenital Diaphragmatic Hernia: Implications for the Management of Pulmonary Hypertension. J. Pediatr. 2018, 197, 17–22. [Google Scholar] [CrossRef]
- Major, D.; Cadenas, M.; Fournier, L.; Leclerc, S.; Lefebvre, M.; Cloutier, R. Retinol status of newborn infants with congenital diaphragmatic hernia. Pediatr. Surg. Int. 1998, 13, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Beurskens, L.W.J.E.; Schrijver, L.H.; Tibboel, D.; Wildhagen, M.F.; Knapen, M.F.C.M.; Lindemans, J.; de Vries, J.; Steegers-Theunissen, R.P.M. Dietary vitamin A intake below the recommended daily intake during pregnancy and the risk of congenital diaphragmatic hernia in the offspring. Birth Defects Res. A Clin. Mol. Teratol. 2013, 97, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Sood, B.G.; Wykes, S.; Landa, M.; De Jesus, L.; Rabah, R. Expression of eNOS in the lungs of neonates with pulmonary hypertension. Exp. Mol. Pathol. 2011, 90, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Shehata, S.M.K.; Sharma, H.S.; Mooi, W.J.; Tibboel, D. Pulmonary hypertension in human newborns with congenital diaphragmatic hernia is associated with decreased vascular expression of nitric-oxide synthase. Cell Biochem. Biophys. 2006, 44, 147–155. [Google Scholar] [CrossRef]
- de Lagausie, P.; de Buys-Roessingh, A.; Ferkdadji, L.; Saada, J.; Aisenfisz, S.; Martinez-Vinson, C.; Fund, X.; Cayuela, J.M.; Peuchmaur, M.; Mercier, J.C.; et al. Endothelin receptor expression in human lungs of newborns with congenital diaphragmatic hernia. J. Pathol. 2005, 205, 112–118. [Google Scholar] [CrossRef]
- Shehata, S.M.; Mooi, W.J.; Okazaki, T.; El-Banna, I.; Sharma, H.S.; Tibboel, D. Enhanced expression of vascular endothelial growth factor in lungs of newborn infants with congenital diaphragmatic hernia and pulmonary hypertension. Thorax 1999, 54, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Siebert, J.R.; Haas, J.E.; Beckwith, J.B. Left ventricular hypoplasia in congenital diaphragmatic hernia. J. Pediatr. Surg. 1984, 19, 567–571. [Google Scholar] [CrossRef]
- Crawford, D.C.; Wright, V.M.; Drake, D.P.; Allan, L.D. Fetal diaphragmatic hernia: The value of fetal echocardiography in the prediction of postnatal outcome. Br. J. Obstet. Gynaecol. 1989, 96, 705–710. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Vermilion, R.P.; Hirschl, R.B. Evaluation of left ventricular mass in children with left-sided congenital diaphragmatic hernia. J. Pediatr. 1994, 125, 447–451. [Google Scholar] [CrossRef]
- Kailin, J.A.; Dhillon, G.S.; Maskatia, S.A.; Cass, D.L.; Shamshirsaz, A.A.; Mehollin-Ray, A.R.; Cassady, C.I.; Ayres, N.A.; Wang, Y.; Belfort, M.A.; et al. Fetal left-sided cardiac structural dimensions in left-sided congenital diaphragmatic hernia—Association with severity and impact on postnatal outcomes. Prenat. Diagn. 2017, 37, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Stressig, R.; Fimmers, R.; Eising, K.; Gembruch, U.; Kohl, T. Preferential streaming of the ductus venosus and inferior caval vein towards the right heart is associated with left heart underdevelopment in human fetuses with left-sided diaphragmatic hernia. Heart 2010, 96, 1564–1568. [Google Scholar] [CrossRef]
- Sylvester, K.G.; Rasanen, J.; Kitano, Y.; Flake, A.W.; Crombleholme, T.M.; Adzick, N.S. Tracheal occlusion reverses the high impedance to flow in the fetal pulmonary circulation and normalizes its physiological response to oxygen at full term. J. Pediatr. Surg. 1998, 33, 1071–1075. [Google Scholar] [CrossRef]
- Moreno-Alvarez, O.; Hernandez-Andrade, E.; Oros, D.; Jani, J.; Deprest, J.; Gratacos, E. Association between intrapulmonary arterial Doppler parameters and degree of lung growth as measured by lung-to-head ratio in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2008, 31, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Mahieu-Caputo, D.; Aubry, M.C.; El Sayed, M.; Joubin, L.; Thalabard, J.C.; Dommergues, M. Evaluation of fetal pulmonary vasculature by power Doppler imaging in congenital diaphragmatic hernia. J. Ultrasound Med. 2004, 23, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Ruano, R.; Aubry, M.-C.; Barthe, B.; Mitanchez, D.; Dumez, Y.; Benachi, A. Quantitative analysis of fetal pulmonary vasculature by 3-dimensional power Doppler ultrasonography in isolated congenital diaphragmatic hernia. Am. J. Obstet. Gynecol. 2006, 195, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Tajchman, U.W.; Tuder, R.M.; Horan, M.; Parker, T.A.; Abman, S.H. Persistent eNOS in lung hypoplasia caused by left pulmonary artery ligation in the ovine fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 1997, 272, L969–L978. [Google Scholar] [CrossRef]
- Chan, S.Y.; Rubin, L.J. Metabolic dysfunction in pulmonary hypertension: From basic science to clinical practice. Eur. Respir. Rev. 2017, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culley, M.K.; Chan, S.Y. Mitochondrial metabolism in pulmonary hypertension: Beyond mountains there are mountains. J. Clin. Invest. 2018, 128, 3704–3715. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Summer, R. Cellular Metabolism in Lung Health and Disease. Annu. Rev. Physiol. 2019, 81, 403–428. [Google Scholar] [CrossRef] [PubMed]
- Wigglesworth, J.S.; Desai, R. Use of DNA estimation for growth assessment in normal and hypoplastic fetal lungs. Arch. Dis. Child. 1981, 56, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Kotecha, S.; Barbato, A.; Bush, A.; Claus, F.; Davenport, M.; Delacourt, C.; Deprest, J.; Eber, E.; Frenckner, B.; Greenough, A.; et al. Congenital diaphragmatic hernia. Eur. Respir. J. 2012, 39, 820–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameis, D.; Khoshgoo, N.; Keijzer, R. Abnormal lung development in congenital diaphragmatic hernia. Semin. Pediatr. Surg. 2017, 26, 123–128. [Google Scholar] [CrossRef]
- Montalva, L.; Antounians, L.; Zani, A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: Factors and pathways involved in pulmonary vascular remodeling. Pediatr. Res. 2019, 85, 754–768. [Google Scholar] [CrossRef]
- Skarsgard, E.D.; Harrison, M.R. Congenital Diaphragmatic Hernia: The Surgeon’s Perspective. Pediatr. Rev. 1999, 20, e71–e78. [Google Scholar] [CrossRef] [Green Version]
- Harding, R.; De Matteo, R. The Influence of nutrition on lung development before and after birth. In The Lung: Development, Aging and the Environment, 2nd ed.; Harding, R., Pinkerton, K.E., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 349–368. [Google Scholar] [CrossRef]
- Rood, K.; Lopez, V.; La Frano, M.R.; Fiehn, O.; Zhang, L.; Blood, A.B.; Wilson, S.M. Gestational Hypoxia and Programing of Lung Metabolism. Front. Physiol. 2019, 10, 1453. [Google Scholar] [CrossRef]
- Blood, A.B.; Terry, M.H.; Merritt, T.A.; Papamatheakis, D.G.; Blood, Q.; Ross, J.M.; Power, G.G.; Longo, L.D.; Wilson, S.M. Effect of chronic perinatal hypoxia on the role of rho-kinase in pulmonary artery contraction in newborn lambs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R136–R146. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, W.W.; Chandel, N.S. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. Cell Physiol. 2011, 300, C385–C393. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, Y. Apoptosis and necrosis: Intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 1997, 4, 429–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, C.; Schweizer, M.; Cossarizza, A.; Franceschi, C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996, 378, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.P.L. New Insights into Congenital Diaphragmatic Hernia—A Surgeon’s Introduction to CDH Animal Models. Front. Pediatr. 2014, 2, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluth, D.; Tenbrinck, R.; von Ekesparre, M.; Kangah, R.; Reich, P.; Brandsma, A.; Tibboel, D.; Lambrecht, W. The natural history of congenital diaphragmatic hernia and pulmonary hypoplasia in the embryo. J. Pediatr. Surg. 1993, 28, 456–463. [Google Scholar] [CrossRef]
- Keijzer, R.; Liu, J.; Deimling, J.; Tibboel, D.; Post, M. Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am. J. Pathol. 2000, 156, 1299–1306. [Google Scholar] [CrossRef] [Green Version]
- McClenaghan, C.; Woo, K.V.; Nichols, C.G. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019, 74, 14–22. [Google Scholar] [CrossRef]
- de Buys, R.A.S.; de Lagausie, P.; Barbet, J.-P.; Mercier, J.-C.; Aigrain, Y.; Dinh-Xuan, A.T. Role of ATP-dependent potassium channels in pulmonary vascular tone of fetal lambs with congenital diaphragmatic hernia. Pediatr. Res. 2006, 60, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Pelizzo, G.; Ballico, M.; Mimmi, M.C.; Peirò, J.L.; Marotta, M.; Federico, C.; Andreatta, E.; Nakib, G.; Sampaolesi, M.; Zambaiti, E.; et al. Metabolomic profile of amniotic fluid to evaluate lung maturity: The diaphragmatic hernia lamb model. Multidiscip. Respir. Med. 2014, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Marwan, A.I.; Shabeka, U.; Reisz, J.A.; Zheng, C.; Serkova, N.J.; Dobrinskikh, E. Unique Heterogeneous Topological Pattern of the Metabolic Landscape in Rabbit Fetal Lungs following Tracheal Occlusion. Fetal Diagn. Ther. 2019, 45, 145–154. [Google Scholar] [CrossRef]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef]
- Green, C.R.; Wallace, M.; Divakaruni, A.S.; Phillips, S.A.; Murphy, A.N.; Ciaraldi, T.P.; Metallo, C.M. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 2016, 12, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Piersigilli, F.; Syed, M.; Lam, T.T.; Dotta, A.; Massoud, M.; Vernocchi, P.; Quagliariello, A.; Putignani, L.; Auriti, C.; Salvatori, G.; et al. An omic approach to congenital diaphragmatic hernia: A pilot study of genomic, microRNA, and metabolomic profiling. J. Perinatol. 2020, 40, 952–961. [Google Scholar] [CrossRef]
- Croitor-Sava, A.; Beck, V.; Sandaite, I.; Van Huffel, S.; Dresselaers, T.; Claus, F.; Himmelreich, U.; Deprest, J. High-Resolution1H NMR Spectroscopy Discriminates Amniotic Fluid of Fetuses with Congenital Diaphragmatic Hernia from Healthy Controls. J. Proteome Res. 2015, 14, 4502–4510. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994, 65, 27–33. [Google Scholar] [CrossRef]
- Barzilai, A.; Yamamoto, K.-I. DNA damage responses to oxidative stress. DNA Repair 2004, 3, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Davies, K. The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress. IUBMB Life 1999, 48, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Laforgia, N.; Di Mauro, A.; Favia Guarnieri, G.; Varvara, D.; De Cosmo, L.; Panza, R.; Capozza, M.; Baldassarre, M.E.; Resta, N. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. Oxid. Med. Cell. Longev. 2018, 2018, 7404082. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; He, L.; Wu, C.; Zhang, Y.; Wu, X.; Yin, Y. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Wells, W.W.; Xu, D.P. Dehydroascorbate reduction. J. Bioenerg. Biomembr. 1994, 26, 369–377. [Google Scholar] [CrossRef]
- Lenton, K.J.; Therriault, H.; Cantin, A.M.; Fülöp, T.; Payette, H.; Wagner, J.R. Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am. J. Clin. Nutr. 2000, 71, 1194–1200. [Google Scholar] [CrossRef] [Green Version]
- Meister, A. Glutathion ascorbic acid antioxidant system in animals. J. Biol. Chem. 1994, 269, 9397–9400. [Google Scholar] [CrossRef]
- González-Reyes, S.; Martínez, L.; Tovar, J.A. Effects of prenatal vitamins A, E, and C on the hypoplastic hearts of fetal rats with diaphragmatic hernia. J. Pediatr. Surg. 2005, 40, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Kamat, J.P.; Devasagayam, T.P. Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox Rep. 1999, 4, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawling, J.M.; Jackson, T.M.; Roebuck, B.D.; Poirier, G.G.; Kirkland, J.B. The effect of niacin deficiency on diethylnitrosamine-induced hepatic poly(ADP-ribose) levels and altered hepatic foci in the fischer-344 rat. Nutr. Cancer 1995, 24, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Liaudet, L.; Soriano, F.G.; Szabó, E.; Virág, L.; Mabley, J.G.; Salzman, A.L.; Szabo, C. Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. USA 2000, 97, 10203–10208. [Google Scholar] [CrossRef] [Green Version]
- Gosemann, J.-H.; Friedmacher, F.; Hunziker, M.; Alvarez, L.; Corcionivoschi, N.; Puri, P. Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia. Pediatr. Surg. Int. 2013, 29, 3–8. [Google Scholar] [CrossRef]
- Aras-López, R.; Tovar, J.A.; Martínez, L. Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia. Pediatr. Surg. Int. 2016, 32, 141–145. [Google Scholar] [CrossRef]
- Pedley, A.M.; Benkovic, S.J. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends Biochem. Sci. 2017, 42, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Hoogenraad, N.J.; Kretchmer, N. A Review: Biological and Clinical Aspects of Pyrimidine Metabolism. Pediatr. Res. 1974, 8, 724–734. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.G.; Hawley, S.A. AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays 2001, 23, 1112–1119. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. Metabolic control: A new solution to an old problem. Curr. Biol. 2000, 10, R757–R759. [Google Scholar] [CrossRef] [Green Version]
- Montalva, L.; Zani, A. Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr. Surg. Int. 2019, 35, 41–61. [Google Scholar] [CrossRef]
- Mysore, M.R.; Margraf, L.R.; Jaramillo, M.A.; Breed, D.R.; Chau, V.L.; Arévalo, M.; Moya, F.R. Surfactant Protein A Is Decreased in a Rat Model of Congenital Diaphragmatic Hernia. Am. J. Respir. Crit. Care Med. 1998, 157, 654–657. [Google Scholar] [CrossRef]
- Kluth, D.; Kangah, R.; Reich, P.; Tenbrinck, R.; Tibboel, D.; Lambrecht, W. Nitrofen-induced diaphragmatic hernias in rats: An animal model. J. Pediatr. Surg. 1990, 25, 850–854. [Google Scholar] [CrossRef]
- Kutasy, B.; Friedmacher, F.; Pes, L.; Coyle, D.; Doi, T.; Paradisi, F.; Puri, P. Antenatal retinoic acid administration increases trophoblastic retinol-binding protein dependent retinol transport in the nitrofen model of congenital diaphragmatic hernia. Pediatr. Res. 2016, 79, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Schumacker, P.T.; Gillespie, M.N.; Nakahira, K.; Choi, A.M.K.; Crouser, E.D.; Piantadosi, C.A.; Bhattacharya, J. Mitochondria in lung biology and pathology: More than just a powerhouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L962–L974. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.D.; Bazan, I.; Zhang, Y.; Fares, W.H.; Lee, P.J. Mitochondrial dysfunction and pulmonary hypertension: Cause, effect, or both. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L782–L796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, J.; Dasgupta, A.; Huston, J.; Chen, K.-H.; Archer, S.L. Mitochondrial dynamics in pulmonary arterial hypertension. J. Mol. Med. 2015, 93, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Sánchez, B.; Priego-Capote, F.; de Castro, M.D.L. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. TrAC Trends Anal. Chem. 2010, 29, 111–119. [Google Scholar] [CrossRef]
- Römisch-Margl, W.; Prehn, C.; Bogumil, R.; Röhring, C.; Suhre, K.; Adamski, J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 2012, 8, 133–142. [Google Scholar] [CrossRef]
- Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 2008, 372, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Sheedy, J.R. Metabolite analysis of biological fluids and tissues by proton nuclear magnetic resonance spectroscopy. Methods Mol. Biol. 2013, 1055, 81–97. [Google Scholar] [PubMed]
- Gowda, G.A.N.; Abell, L.; Lee, C.F.; Tian, R.; Raftery, D. Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo (1)H NMR Spectroscopy. Anal. Chem. 2016, 88, 4817–4824. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Meyer, K.A.; Jackson, T.M.; Schock, T.B.; Johnson, W.E.; Bearden, D.W. Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha). Metabolomics 2015, 11, 1302–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouskoumvekaki, I.; Panagiotou, G. Navigating the human metabolome for biomarker identification and design of pharmaceutical molecules. J. Biomed. Biotechnol. 2011, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NCDH-VC | NCDH-NC | NC-VC | NCDH-VC | NCDH-NC | NC-VC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolites | p-Value | Fold Change | p-Value | Fold Change | p-Value | Fold Change | Metabolites | p-Value | Fold Change | p-Value | Fold Change | p-Value | Fold Change |
2-Aminobutyrate | 1.91 × 10−4 | −2.30 | 3.28 × 10−2 | −2.20 | 8.24 × 10−1 | −1.05 | Lysine | 4.51 × 10−5 | −1.58 | 9.46 × 10−1 | −1.01 | 9.37 × 10−3 | −1.56 |
3-Hydroxybutyrate | 5.14 × 10−2 | 1.09 | 7.84 × 10−2 | 1.16 | 3.93 × 10−1 | −1.06 | Maltose | 1.37 × 10−1 | 1.37 | 5.70 × 10−1 | −1.26 | 2.64 × 10−1 | 1.74 |
Acetate | 6.02 × 10−2 | 1.19 | 9.29 × 10−1 | 1.01 | 9.44 × 10−2 | 1.18 | Mannose | 3.25 × 10−1 | 1.20 | 7.84 × 10−2 | −1.45 | 2.25 × 10−2 | 1.74 |
ADP | 3.38 × 10−7 | −2.74 | 3.37 × 10−3 | −2.47 | 2.75 × 10−1 | −1.11 | Methionine | 8.56 × 10−1 | 1.02 | 5.70 × 10−1 | −1.05 | 3.79 × 10−1 | 1.07 |
Alanine | 3.36 × 10−4 | −1.54 | 2.20 × 10−2 | −1.28 | 4.28 × 10−2 | −1.20 | myo-Inositol | 3.34 × 10−1 | −1.06 | 4.71 × 10−2 | 1.20 | 1.51 × 10−3 | −1.27 |
AMP | 2.83 × 10−3 | 2.81 | 9.18 × 10−2 | 1.42 | 9.37 × 10−3 | 1.99 | NAD+ | 2.20 × 10−7 | −4.48 | 8.97 × 10−3 | −2.99 | 1.62 × 10−2 | −1.50 |
Ascorbate | 2.33 × 10−4 | −1.69 | 4.23 × 10−3 | −1.58 | 2.58 × 10−1 | −1.07 | NADP+ | 5.00 × 10−3 | −1.47 | 2.06 × 10−2 | −1.41 | 7.30 × 10−1 | −1.04 |
Asparagine | 6.34 × 10−1 | −1.09 | 1.50 × 10−1 | −1.31 | 1.71 × 10−1 | 1.20 | Niacinamide | 4.75 × 10−4 | 2.75 | 3.44 × 10−3 | 1.93 | 7.97 × 10−2 | 1.42 |
Aspartate | 9.99 × 10−2 | −1.30 | 1.78 × 10−1 | −1.22 | 6.92 × 10−1 | −1.07 | O-Acetylcarnitine | 4.99 × 10−4 | 3.05 | 7.38 × 10−1 | 1.06 | 9.37 × 10−3 | 2.87 |
ATP | 1.98 × 10−4 | −21.21 | 2.78 × 10−2 | −7.84 | 1.06 × 10−3 | −2.70 | O-Phosphocholine | 2.20 × 10−7 | −2.90 | 1.62 × 10−3 | −1.89 | 5.88 × 10−4 | −1.54 |
Betaine | 1.05 × 10−2 | 1.38 | 3.43 × 10−2 | 1.37 | 9.53 × 10−1 | 1.01 | O-Phosphoethanolamine | 3.17 × 10−1 | −1.13 | 9.83 × 10−1 | −1.00 | 2.54 × 10−1 | −1.13 |
Butyrate | 7.98 × 10−2 | −1.39 | 3.94 × 10−1 | −1.20 | 2.58 × 10−1 | −1.16 | Pantothenate | 8.99 × 10−6 | −3.00 | 1.62 × 10−3 | −1.90 | 5.88 × 10−4 | −1.58 |
Choline | 8.33 × 10−4 | 2.00 | 1.50 × 10−1 | 1.24 | 2.75 × 10−2 | 1.61 | Phenylalanine | 3.11 × 10−2 | −1.30 | 4.48 × 10−2 | −1.27 | 8.24 × 10−1 | −1.03 |
Citrate | 5.74 × 10−4 | −1.60 | 7.84 × 10−2 | −1.30 | 6.94 × 10−2 | −1.24 | Proline | 6.02 × 10−2 | −1.23 | 1.85 × 10−1 | −1.25 | 9.20 × 10−1 | 1.02 |
Creatine | 2.01 × 10−4 | −1.35 | 3.94 × 10−1 | −1.06 | 3.68 × 10−3 | −1.28 | Propionate | 3.68 × 10−2 | 1.51 | 2.88 × 10−1 | 1.26 | 3.93 × 10−1 | 1.20 |
Creatine phosphate | 8.12 × 10−4 | −9.02 | 1.49 × 10−1 | −2.69 | 3.68 × 10−3 | −3.36 | Serine | 3.17 × 10−1 | 1.11 | 2.19 × 10−1 | −1.13 | 1.26 × 10−2 | 1.25 |
Formate | 6.53 × 10−5 | −1.52 | 9.18 × 10−2 | −1.24 | 4.90 × 10−2 | −1.22 | sn-Glycero-3-phosphocholine | 2.16 × 10−2 | 1.36 | 2.06 × 10−2 | 1.40 | 8.24 × 10−1 | −1.03 |
Fumarate | 3.33 × 10−2 | −1.34 | 5.70 × 10−1 | −1.08 | 7.97 × 10−2 | −1.24 | Succinate | 6.62 × 10−1 | 1.07 | 2.78 × 10−2 | −1.66 | 1.62 × 10−2 | 1.77 |
Glucose | 6.41 × 10−2 | 1.33 | 2.78 × 10−2 | 1.66 | 2.58 × 10−1 | −1.25 | Sucrose | 8.70 × 10−1 | −1.03 | 1.76 × 10−1 | −1.72 | 1.99 × 10−1 | 1.67 |
Glutamate | 3.00 × 10−5 | −1.56 | 1.50 × 10−1 | −1.23 | 4.93 × 10−2 | −1.27 | Threonine | 7.21 × 10−1 | −1.04 | 2.20 × 10−2 | −1.34 | 4.28 × 10−2 | 1.28 |
Glutamine | 1.87 × 10−1 | 1.13 | 6.56 × 10−1 | 1.05 | 2.75 × 10−1 | 1.08 | Tryptophan | 9.84 × 10−1 | −1.00 | 1.85 × 10−1 | −1.21 | 2.31 × 10−1 | 1.20 |
Glutathione | 3.11 × 10−2 | −1.49 | 5.14 × 10−1 | −1.14 | 7.19 × 10−2 | −1.30 | Tyrosine | 8.56 × 10−1 | −1.02 | 9.83 × 10−1 | 1.00 | 8.24 × 10−1 | −1.02 |
Glycine | 1.99 × 10−1 | 1.13 | 3.58 × 10−1 | 1.12 | 9.49 × 10−1 | 1.01 | UDP-galactose | 8.75 × 10−3 | 1.82 | 2.19 × 10−1 | −1.23 | 5.74 × 10−3 | 2.24 |
GTP | 3.68 × 10−4 | −2.00 | 6.87 × 10−3 | −1.81 | 2.59 × 10−1 | −1.11 | UDP-glucose | 8.12 × 10−4 | −1.66 | 1.50 × 10−1 | −1.28 | 4.59 × 10−2 | −1.30 |
Histidine | 6.00 × 10−1 | 1.18 | 9.29 × 10−1 | 1.04 | 5.51 × 10−1 | 1.13 | UDP-glucuronate | 3.11 × 10−2 | 1.26 | 6.56 × 10−1 | −1.07 | 7.97 × 10−2 | 1.34 |
Hypotaurine | 1.37 × 10−1 | −1.26 | 5.70 × 10−1 | −1.10 | 3.07 × 10−1 | −1.15 | UDP-N-Acetylglucosamine | 2.01 × 10−4 | −1.68 | 1.89 × 10−1 | −1.14 | 1.06 × 10−3 | −1.47 |
Inosine | 3.99 × 10−3 | 13.18 | 2.77 × 10−2 | 2.88 | 4.88 × 10−2 | 4.58 | UMP | 7.34 × 10−3 | 2.40 | 1.04 × 10−1 | 1.52 | 9.44 × 10−2 | 1.58 |
Isobutyrate | 5.69 × 10−4 | −1.85 | 3.46 × 10−2 | −1.43 | 4.80 × 10−2 | −1.30 | Uracil | 2.33 × 10−4 | 11.11 | 9.33 × 10−1 | 1.03 | 2.25 × 10−2 | 10.76 |
Isoleucine | 3.68 × 10−2 | −1.21 | 1.29 × 10−1 | −1.18 | 8.24 × 10−1 | −1.02 | Uridine | 1.54 × 10−4 | 2.68 | 1.78 × 10−1 | −1.18 | 5.88 × 10−4 | 3.16 |
Lactate | 1.94 × 10−3 | 2.00 | 2.74 × 10−1 | 1.14 | 1.62 × 10−2 | 1.75 | UDP | 1.77 × 10−6 | −7.42 | 1.39 × 10−2 | −4.46 | 1.49 × 10−2 | −1.66 |
Leucine | 3.06 × 10−2 | −1.21 | 9.62 × 10−2 | −1.16 | 6.22 × 10−1 | −1.04 | Valine | 5.41 × 10−3 | −1.35 | 1.50 × 10−1 | −1.18 | 2.06 × 10−1 | −1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Lopez, M.d.M.; Oria, M.; Watanabe-Chailland, M.; Varela, M.F.; Romick-Rosendale, L.; Peiro, J.L. Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats. Metabolites 2021, 11, 177. https://doi.org/10.3390/metabo11030177
Romero-Lopez MdM, Oria M, Watanabe-Chailland M, Varela MF, Romick-Rosendale L, Peiro JL. Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats. Metabolites. 2021; 11(3):177. https://doi.org/10.3390/metabo11030177
Chicago/Turabian StyleRomero-Lopez, Maria del Mar, Marc Oria, Miki Watanabe-Chailland, Maria Florencia Varela, Lindsey Romick-Rosendale, and Jose L. Peiro. 2021. "Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats" Metabolites 11, no. 3: 177. https://doi.org/10.3390/metabo11030177
APA StyleRomero-Lopez, M. d. M., Oria, M., Watanabe-Chailland, M., Varela, M. F., Romick-Rosendale, L., & Peiro, J. L. (2021). Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats. Metabolites, 11(3), 177. https://doi.org/10.3390/metabo11030177