Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Results
Dark Adaptation and Plasma Metabolite Levels
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Inclusion and Exclusion Criteria
4.3. Study Protocol
4.4. AMD Grading
4.5. Dark Adaptation Testing
4.6. Metabolomic Profiling and Data Processing
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Miller, J.B.; Park, D.H.; Tsikata, E.; Davoudi, S.; Rahmani, S.; Pierce, J.; Silva, R.; Chen, T.C.; Kim, I.K.; et al. Structural Changes Associated with Delayed Dark Adaptation in Age-Related Macular Degeneration. Ophthalmology 2017, 124, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Owsley, C.; Huisingh, C.; Clark, M.E.; Jackson, G.R.; McGwin, G., Jr. Comparison of Visual Function in Older Eyes in the Earliest Stages of Age-related Macular Degeneration to Those in Normal Macular Health. Curr. Eye Res. 2016, 41, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Park, D.H.; Mukai, R.; Silverman, R.; Oellers, P.; Mach, S.; Kim, I.K.; Vavvas, D.G.; Miller, J.W.; Miller, J.B.; et al. Peripheral Changes Associated With Delayed Dark Adaptation in Age-related Macular Degeneration. Am. J. Ophthalmol. 2018, 190, 113–124. [Google Scholar] [CrossRef]
- Owsley, C.; McGwin, G., Jr.; Jackson, G.R.; Kallies, K.; Clark, M. Cone- and rod-mediated dark adaptation impairment in age-related maculopathy. Ophthalmology 2007, 114, 1728–1735. [Google Scholar] [CrossRef]
- Jackson, G.R.; Scott, I.U.; Kim, I.K.; Quillen, D.A.; Iannaccone, A.; Edwards, J.G. Diagnostic sensitivity and specificity of dark adaptometry for detection of age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1427–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owsley, C.; McGwin, G., Jr.; Clark, M.E.; Jackson, G.R.; Callahan, M.A.; Kline, L.B.; Witherspoon, C.D.; Curcio, C.A. Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration. Ophthalmology 2016, 123, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Owsley, C.; Jackson, G.R.; White, M.; Feist, R.; Edwards, D. Delays in rod-mediated dark adaptation in early age-related maculopathy. Ophthalmology 2001, 108, 1196–1202. [Google Scholar] [CrossRef]
- Laíns, I.; Chung, W.; Kelly, R.S.; Gil, J.; Marques, M.; Barreto, P.; Murta, J.N.; Kim, I.K.; Vavvas, D.G.; Miller, J.B.; et al. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Duarte, D.; Barros, A.S.; Martins, A.S.; Gil, J.; Miller, J.B.; Marques, M.; Mesquita, T.; Kim, I.K.; Cachulo, M.D.L.; et al. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS ONE 2017, 12, e0177749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laíns, I.; Kelly, R.S.; Miller, J.B.; Silva, R.; Vavvas, D.G.; Kim, I.K.; Murta, J.N.; Lasky-Su, J.; Miller, J.W.; Husain, D. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 2018, 125, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Nyholt, D.R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 2004, 74, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Li, M.X.; Yeung, J.M.; Cherny, S.S.; Sham, P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 2012, 131, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersten, E.; Dammeier, S.; Ajana, S.; Groenewoud, J.M.M.; Codrea, M.; Klose, F.; Lechanteur, Y.T.; Fauser, S.; Ueffing, M.; Delcourt, C.; et al. Metabolomics in serum of patients with non-advanced age-related macular degeneration reveals aberrations in the glutamine pathway. PLoS ONE 2019, 14, e0218457. [Google Scholar] [CrossRef] [Green Version]
- Colijn, J.M.; den Hollander, A.I.; Demirkan, A.; Cougnard-Grégoire, A.; Verzijden, T.; Kersten, E.; Meester-Smoor, M.A.; Merle, B.M.J.; Papageorgiou, G.; Ahmad, S.; et al. Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration: Evidence from the EYE-RISK and European Eye Epidemiology Consortia. Ophthalmology 2019, 126, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acar, İ.E.; Lores-Motta, L.; Colijn, J.M.; Meester-Smoor, M.A.; Verzijden, T.; Cougnard-Gregoire, A.; Ajana, S.; Merle, B.M.J.; de Breuk, A.; Heesterbeek, T.J.; et al. Integrating Metabolomics, Genomics, and Disease Pathways in Age-Related Macular Degeneration: The EYE-RISK Consortium. Ophthalmology 2020. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.N.; Green, B.D.; Thompson, R.B.; den Hollander, A.I.; Lengyel, I.; Consortium, E.-R. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M. Essential fatty acids, DHA and human brain. Indian J. Pediatr. 2005, 72, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Klenk, E. The metabolism of polyenoic fatty acids. Adv. Lipid Res. 1965, 3, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ramchani-Ben Othman, K.; Cercy, C.; Amri, M.; Doly, M.; Ranchon-Cole, I. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration. PLoS ONE 2015, 10, e0128395. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, B.G.; Weisinger, H.S.; Neuringer, M.; Mitchell, D.C. The role of docosahexaenoic acid in retinal function. Lipids 2001, 36, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Pikuleva, I.A.; Curcio, C.A. Cholesterol in the retina: The best is yet to come. Prog. Retin. Eye Res. 2014, 41, 64–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülcan, H.G.; Alvarez, R.A.; Maude, M.B.; Anderson, R.E. Lipids of human retina, retinal pigment epithelium, and Bruch’s membrane/choroid: Comparison of macular and peripheral regions. Investig. Ophthalmol. Vis. Sci. 1993, 34, 3187–3193. [Google Scholar]
- Léveillard, T.; Sahel, J.-A. Metabolic and redox signaling in the retina. Cell. Mol. Life Sci. 2017, 74, 3649–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, E.; Hung, S.; Willett, W.C.; Spiegelman, D.; Rimm, E.B.; Seddon, J.M.; Colditz, G.A.; Hankinson, S.E. Prospective study of dietary fat and the risk of age-related macular degeneration. Am. J. Clin. Nutr. 2001, 73, 209–218. [Google Scholar] [CrossRef]
- Chua, B.; Flood, V.; Rochtchina, E.; Wang, J.J.; Smith, W.; Mitchell, P. Dietary fatty acids and the 5-year incidence of age-related maculopathy. Arch. Ophthalmol. 2006, 124, 981–986. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.; Rosner, B.; Seddon, J.M. Dietary omega-3 fatty acids, other fat intake, genetic susceptibility, and progression to incident geographic atrophy. Ophthalmology 2013, 120, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merle, B.M.; Delyfer, M.N.; Korobelnik, J.F.; Rougier, M.B.; Malet, F.; Féart, C.; Le Goff, M.; Peuchant, E.; Letenneur, L.; Dartigues, J.F.; et al. High concentrations of plasma n3 fatty acids are associated with decreased risk for late age-related macular degeneration. J. Nutr. 2013, 143, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Merle, B.M.; Benlian, P.; Puche, N.; Bassols, A.; Delcourt, C.; Souied, E.H. Circulating omega-3 Fatty acids and neovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2010–2019. [Google Scholar] [CrossRef] [Green Version]
- Lamb, T.D.; Pugh, E.N. Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 2004, 23, 307–380. [Google Scholar] [CrossRef]
- SanGiovanni, J.P.; Chew, E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 2005, 24, 87–138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Houghton, L.A.; Brenna, J.T.; Noy, N. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J. Biol. Chem. 1996, 271, 20507–20515. [Google Scholar] [CrossRef] [Green Version]
- Handa, J.T.; Cano, M.; Wang, L.; Datta, S.; Liu, T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 2017, 1862, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Catalá, A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int. J. Biochem. Cell. Biol. 2006, 38, 1482–1495. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.J.; Rodrigo-Diaz, E.; Parry, N.R.A.; Kelly, J.M.F.; Carden, D.; Aslam, T.M.; Murray, I.J. Slowed Dark Adaptation in Early AMD: Dual Stimulus Reveals Scotopic and Photopic Abnormalities. Investig. Ophthalmol. Vis. Sci. 2018, 59, amd202–amd210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merle, B.M.; Silver, R.E.; Rosner, B.; Seddon, J.M. Adherence to a Mediterranean diet, genetic susceptibility, and progression to advanced macular degeneration: A prospective cohort study. Am. J. Clin. Nutr. 2015, 102, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Merle, B.M.J.; Colijn, J.M.; Cougnard-Grégoire, A.; de Koning-Backus, A.P.M.; Delyfer, M.N.; Kiefte-de Jong, J.C.; Meester-Smoor, M.; Féart, C.; Verzijden, T.; Samieri, C.; et al. Mediterranean Diet and Incidence of Advanced Age-Related Macular Degeneration: The EYE-RISK Consortium. Ophthalmology 2019, 126, 381–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mares, J.A.; Voland, R.P.; Sondel, S.A.; Millen, A.E.; Larowe, T.; Moeller, S.M.; Klein, M.L.; Blodi, B.A.; Chappell, R.J.; Tinker, L.; et al. Healthy lifestyles related to subsequent prevalence of age-related macular degeneration. Arch. Ophthalmol. 2011, 129, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Nunes, S.; Alves, D.; Barreto, P.; Raimundo, M.; da Luz Cachulo, M.; Farinha, C.; Laíns, I.; Rodrigues, J.; Almeida, C.; Ribeiro, L.; et al. Adherence to a Mediterranean diet and its association with age-related macular degeneration. The Coimbra Eye Study-Report 4. Nutrition 2018, 51–52, 6–12. [Google Scholar] [CrossRef]
- Chong, E.W.; Kreis, A.J.; Wong, T.Y.; Simpson, J.A.; Guymer, R.H. Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: A systematic review and meta-analysis. Arch. Ophthalmol. 2008, 126, 826–833. [Google Scholar] [CrossRef]
- van Kuijk, F.J.; Buck, P. Fatty acid composition of the human macula and peripheral retina. Investig. Ophthalmol. Vis. Sci. 1992, 33, 3493–3496. [Google Scholar]
- Orban, T.; Johnson, W.M.; Dong, Z.; Maeda, T.; Maeda, A.; Sakai, T.; Tsuneoka, H.; Mieyal, J.J.; Palczewski, K. Serum levels of lipid metabolites in age-related macular degeneration. FASEB J. 2015, 29, 4579–4588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Walmsley, S.; Cheung, G.C.M.; Chen, L.; Cheng, C.Y.; Beuerman, R.W.; Wong, T.Y.; Zhou, L.; Choi, H. Customized Consensus Spectral Library Building for Untargeted Quantitative Metabolomics Analysis with Data Independent Acquisition Mass Spectrometry and MetaboDIA Workflow. Anal. Chem. 2017, 89, 4897–4906. [Google Scholar] [CrossRef]
- Luo, D.; Deng, T.; Yuan, W.; Deng, H.; Jin, M. Plasma metabolomic study in Chinese patients with wet age-related macular degeneration. BMC Ophthalmol. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, M.P.; Park, Y.; Parks, M.B.; Burgess, L.G.; Uppal, K.; Lee, K.; Jones, D.P.; Brantley, M.A., Jr. Metabolome-Wide Association Study of Neovascular Age-Related Macular Degeneration. PLoS ONE 2013, 8, e72737. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curi, R.; Newsholme, P.; Procopio, J.; Lagranha, C.; Gorjão, R.; Pithon-Curi, T.C. Glutamine, gene expression, and cell function. Front. Biosci. 2007, 12, 344–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Li, X.; Wang, X.; Johnson, G.A.; Burghardt, R.C.; Dai, Z.; Wang, J.; Wu, Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 2013, 45, 241–256. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Fu, W.J.; Haynes, T.E.; Kohli, R.; Hu, J.; Shi, W.; Spencer, T.E.; Carroll, R.J.; Meininger, C.J.; Wu, G. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J. Nutr. 2005, 135, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17, 571–588. [Google Scholar] [CrossRef] [PubMed]
- Tekwe, C.D.; Lei, J.; Yao, K.; Rezaei, R.; Li, X.; Dahanayaka, S.; Carroll, R.J.; Meininger, C.J.; Bazer, F.W.; Wu, G. Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats. Biofactors 2013, 39, 552–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eells, J.T. Mitochondrial Dysfunction in the Aging Retina. Biology 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujol-Lereis, L.M.; Liebisch, G.; Schick, T.; Lin, Y.; Grassmann, F.; Uchida, K.; Zipfel, P.F.; Fauser, S.; Skerka, C.; Weber, B.H.F. Evaluation of serum sphingolipids and the influence of genetic risk factors in age-related macular degeneration. PLoS ONE 2018, 13, e0200739. [Google Scholar] [CrossRef]
- Simon, M.V.; Basu, S.K.; Qaladize, B.; Grambergs, R.C.; Rotstein, N.P.; Mandal, N. Sphingolipids as Critical Players in Retinal Physiology and Pathology. J. Lipid Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Simón, M.V.; Prado Spalm, F.H.; Vera, M.S.; Rotstein, N.P. Sphingolipids as Emerging Mediators in Retina Degeneration. Front. Cell. Neurosci. 2019, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Stiles, M.; Qi, H.; Sun, E.; Tan, J.; Porter, H.; Allegood, J.; Chalfant, C.E.; Yasumura, D.; Matthes, M.T.; LaVail, M.M.; et al. Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J. Lipid Res. 2016, 57, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Dantzer, R. Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches. Curr. Top. Behav. Neurosci. 2017, 31, 117–138. [Google Scholar] [CrossRef]
- Schrör, K. Aspirin and Reye syndrome: A review of the evidence. Paediatr. Drugs 2007, 9, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Leipnitz, G.; Seminotti, B.; Haubrich, J.; Dalcin, M.B.; Dalcin, K.B.; Solano, A.; de Bortoli, G.; Rosa, R.B.; Amaral, A.U.; Dutra-Filho, C.S.; et al. Evidence that 3-hydroxy-3-methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex. J. Neurosci. Res. 2008, 86, 683–693. [Google Scholar] [CrossRef]
- Leipnitz, G.; Seminotti, B.; Amaral, A.U.; de Bortoli, G.; Solano, A.; Schuck, P.F.; Wyse, A.T.; Wannmacher, C.M.; Latini, A.; Wajner, M. Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sci. 2008, 82, 652–662. [Google Scholar] [CrossRef]
- Wang, S.P.; Marth, J.D.; Oligny, L.L.; Vachon, M.; Robert, M.F.; Ashmarina, L.; Mitchell, G.A. 3-Hydroxy-3-methylglutaryl-CoA lyase (HL): Gene targeting causes prenatal lethality in HL-deficient mice. Hum. Mol. Genet. 1998, 7, 2057–2062. [Google Scholar] [CrossRef] [Green Version]
- Leipnitz, G.; Vargas, C.R.; Wajner, M. Disturbance of redox homeostasis as a contributing underlying pathomechanism of brain and liver alterations in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J. Inherit. Metab. Dis. 2015, 38, 1021–1028. [Google Scholar] [CrossRef]
- Ventura, A.L.M.; Dos Santos-Rodrigues, A.; Mitchell, C.H.; Faillace, M.P. Purinergic signaling in the retina: From development to disease. Brain Res. Bull. 2019, 151, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Sobrin, L.; Seddon, J.M. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog. Retin. Eye Res. 2014, 40, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Flamendorf, J.; Agrón, E.; Wong, W.T.; Thompson, D.; Wiley, H.E.; Doss, E.L.; Al-Holou, S.; Ferris, F.L.; Chew, E.Y.; Cukras, C. Impairments in Dark Adaptation Are Associated with Age-Related Macular Degeneration Severity and Reticular Pseudodrusen. Ophthalmology 2015, 122, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Miller, J.B.; Mukai, R.; Mach, S.; Vavvas, D.; Kim, I.K.; Miller, J.W.; Husain, D. Health Conditions Linked to Age-Related Macular Degeneration Associated with Dark Adaptation. Retina 2018, 38, 1145–1155. [Google Scholar] [CrossRef]
- Danis, R.P.; Domalpally, A.; Chew, E.Y.; Clemons, T.E.; Armstrong, J.; SanGiovanni, J.P.; Ferris, F.L., 3rd. Methods and reproducibility of grading optimized digital color fundus photographs in the Age-Related Eye Disease Study 2 (AREDS2 Report Number 2). Investig. Ophthalmol. Vis. Sci. 2013, 54, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6. Am. J. Ophthalmol. 2001, 132, 668–681. [Google Scholar] [CrossRef]
- Chiou, W.L. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. J. Pharmm. Biopharm. 1978, 6, 539–546. [Google Scholar] [CrossRef]
- Laíns, I.; Gantner, M.; Murinello, S.; Lasky-Su, J.A.; Miller, J.W.; Friedlander, M.; Husain, D. Metabolomics in the study of retinal health and disease. Prog. Retin. Eye Res. 2019, 69, 57–79. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
Demographics and Clinical Characteristics | Control | Early AMD | Intermediate AMD | Late AMD |
---|---|---|---|---|
Number, n (%) | 18 (25.4) | 13 (18.3) | 31 (43.7) | 9 (12.7) |
Number of eyes, n (%) | 31 (24.8) | 23 (18.4) | 56 (44.8) | 15 (12.0) |
Included eye, n (%) | ||||
OD | 16 (51.6) | 12 (52.2) | 26 (46.4) | 8 (53.3) |
OS | 15 (48.4) | 11 (47.8) | 30 (53.6) | 7 (46.7) |
Age, mean ± SD | 65.7 ± 7.8 | 66.1 ± 9.3 | 70.4 ± 5.4 | 71.4 ± 6.9 |
Gender, n (%) | ||||
Male | 10 (55.6) | 5 (38.5) | 12 (38.7) | 2 (22.2) |
Female | 8 (44.4) | 8 (61.5) | 19 (61.3) | 7 (77.8) |
BMI, mean ± SD | 26.2 ± 3.8 | 26.7 ± 4.5 | 28.0 ± 4.3 | 29.6 ± 5.3 |
Race/ethnicity, n (%) | ||||
White | 16 (88.9) | 10 (76.9) | 31 (100.0) | 7 (77.8) |
Hispanic | 1 (5.6) | 2 (15.4) | 0 (0.0) | 2 (22.2) |
Black | 1 (5.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Asian | 0 (0.0) | 1 (7.7) | 0 (0.0) | 0 (0.0) |
Smoking, n (%) | ||||
Non-smoker | 8 (44.4) | 9 (69.2) | 13 (41.9) | 5 (55.6) |
Ex-smoker | 9 (50.0) | 4 (30.8) | 17 (54.8) | 4 (44.4) |
Smoker | 1 (5.6) | 0 (0.0) | 1 (3.2) | 0 (0.0) |
AREDS formulation supplementation, n (%) | ||||
No | 17 (94.4) | 12 (92.3) | 6 (19.4) | 2 (22.2) |
Yes | 1 (5.6) | 1 (7.7) | 25 (80.6) | 7 (77.8) |
Reticular Pseudodrusen, n (%) | ||||
No | 16 (88.9) | 8 (61.5) | 7 (22.6) | 5 (55.6) |
Yes | 2 (11.1) | 5 (38.5) | 24 (77.4) | 4 (44.4) |
RIT, mean ± SD | 5.1 (2.8) | 6.7 (5.0) | 15.6 (5.3) | 12.1 (6.8) |
AUDAC, mean ± SD | 0.06 (0.04) | 0.08 (0.07) | 0.19 (0.11) | 0.21 (0.19) |
Super Pathway | Sub Pathway | Metabolite | Coefficient | p-Value |
---|---|---|---|---|
Amino Acid | Glutamate Metabolism | N-acetylglutamine | 17.41 | 0.005 |
Amino Acid | Leucine, Isoleucine and Valine Metabolism | N-acetylleucine | 21.34 | 0.008 |
Carbohydrate | Fructose, Mannose and Galactose Metabolism | mannitol/sorbitol | 8.14 | 0.003 |
Lipid | Fatty Acid Metabolism (Acyl Choline) | linoleoylcholine | −16.55 | 0.008 |
Lipid | Medium Chain Fatty Acid | 10-undecenoate (11:1n1) | −17.21 | 0.006 |
Lipid | Medium Chain Fatty Acid | 5-dodecenoate (12:1n7) | −14.50 | 0.005 |
Lipid | Polyunsaturated Fatty Acid (n3 and n6) | linoleate (18:2n6) | −23.98 | 0.004 |
Lipid | Polyunsaturated Fatty Acid (n3 and n6) | linolenate [alpha or gamma; (18:3n3 or 6)] | −17.89 | 0.001 * |
Super Pathway | Sub Pathway | Metabolite | Coefficient | p-Value |
---|---|---|---|---|
Amino Acid | Glutamate Metabolism | N-acetylglutamine | 0.35 | 0.005 |
Amino Acid | Leucine, Isoleucine and Valine Metabolism | N-acetylleucine | 0.46 | 0.004 |
Carbohydrate | Fructose, Mannose and Galactose Metabolism | mannitol/sorbitol | 0.18 | 6.5 × 10−4 * |
Lipid | Fatty Acid Metabolism (Acyl Choline) | linoleoylcholine | −0.39 | 0.002 * |
Lipid | Fatty Acid Metabolism (Acyl Choline) | stearoylcholine | −0.34 | 0.005 |
Lipid | Hexosylceramides (HCER) | glycosyl ceramide (d18:2/24:1, d18:1/24:2) | −0.55 | 0.002 * |
Lipid | Lysophospholipid | 1-stearoyl-GPC (18:0) | −0.88 | 0.002 |
Lipid | Phosphatidylcholine (PC) | 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) | −0.30 | 3.6 × 10−4 |
Lipid | Sphingomyelins | palmitoyl sphingomyelin (d18:1/16:0) | −1.26 | 0.008 |
Lipid | Sphingomyelins | sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2) | −0.52 | 0.003 |
Lipid | Sphingomyelins | sphingomyelin (d18:1/24:1, d18:2/24:0) | −0.72 | 0.01 |
Lipid | Sphingomyelins | sphingomyelin (d18:2/23:1) | −0.46 | 0.003 |
Nucleotide | Purine Metabolism, (Hypo)Xanthine/Inosine containing | xanthine | −0.30 | 0.008 |
Nucleotide | Pyrimidine Metabolism, Uracil containing | beta-alanine | 0.78 | 0.002 * |
Super Pathway | Sub Pathway | Metabolite | Coefficient | p-Value |
---|---|---|---|---|
Amino Acid | Tryptophan Metabolism | indole-3-carboxylic acid | −0.50 | 0.007 |
Amino Acid | Tryptophan Metabolism | kynurenate | 0.64 | 0.008 |
Lipid | Hexosylceramides (HCER) | glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) | −0.87 | 0.007 |
Super Pathway | Sub Pathway | Metabolite | Coefficient | p-Value |
---|---|---|---|---|
Amino Acid | Leucine, Isoleucine and Valine Metabolism | 3-methyl-2-oxovalerate | 47.36 | 0.001 * |
Amino Acid | Leucine, Isoleucine and Valine Metabolism | 3-methylglutaconate | 19.97 | 4.9 × 10−4 * |
Amino Acid | Leucine, Isoleucine and Valine Metabolism | 3-methylglutarylcarnitine | 12.37 | 0.007 |
Amino Acid | Leucine, Isoleucine and Valine Metabolism | isoleucine | 69.79 | 5.0 × 10−4 * |
Amino Acid | Leucine, Isoleucine and Valine Metabolism | leucine | 73.71 | 0.002 |
Carbohydrate | Fructose, Mannose and Galactose Metabolism | mannitol/sorbitol | 7.50 | 0.009 |
Lipid | Fatty Acid, Dicarboxylate | octadecanedioate (C18-DC) | −32.68 | 0.005 |
Lipid | Lactosylceramides (LCER) | lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) | −53.85 | 0.007 |
Lipid | Polyunsaturated Fatty Acid (n3 and n6) | linolenate [alpha or gamma; (18:3n3 or 6)] | −27.20 | 0.008 |
Nucleotide | Purine Metabolism, (Hypo)Xanthine/Inosine containing | urate | 52.09 | 0.006 |
Peptide | Gamma-glutamyl Amino Acid | gamma-glutamylisoleucine | 25.66 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez, K.M.; Kim, J.; Laíns, I.; Nigalye, A.; Katz, R.; Pundik, S.; Kim, I.K.; Liang, L.; Vavvas, D.G.; Miller, J.B.; et al. Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration. Metabolites 2021, 11, 183. https://doi.org/10.3390/metabo11030183
Mendez KM, Kim J, Laíns I, Nigalye A, Katz R, Pundik S, Kim IK, Liang L, Vavvas DG, Miller JB, et al. Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration. Metabolites. 2021; 11(3):183. https://doi.org/10.3390/metabo11030183
Chicago/Turabian StyleMendez, Kevin M., Janice Kim, Inês Laíns, Archana Nigalye, Raviv Katz, Shrinivas Pundik, Ivana K. Kim, Liming Liang, Demetrios G. Vavvas, John B. Miller, and et al. 2021. "Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration" Metabolites 11, no. 3: 183. https://doi.org/10.3390/metabo11030183
APA StyleMendez, K. M., Kim, J., Laíns, I., Nigalye, A., Katz, R., Pundik, S., Kim, I. K., Liang, L., Vavvas, D. G., Miller, J. B., Miller, J. W., Lasky-Su, J. A., & Husain, D. (2021). Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration. Metabolites, 11(3), 183. https://doi.org/10.3390/metabo11030183