Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions
Abstract
:1. Introduction
2. Results
2.1. In the Field, Susceptible Accessions Accumulate PRIMARY METABolites upon Infection, at the Cost of Hindered Growth, Whereas Resistant Accessions Grow with Limited Changes
2.2. Metabolic Content Discriminates Inoculated A. thaliana Susceptible and Resistant Accessions
2.3. Metabolic Differentiation between Mock-Inoculated and Tumv-Inoculated Genotypes Appears as Early as 5 Days after Inoculation
2.4. The Identification of Metabolic Predictors Reveals 21 Metabolic Signatures Significantly Accumulated in Resistant Accessions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Virus Material
4.3. Experimental Design and Growth Conditions
4.4. TuMV Inoculation Procedure and Harvest
4.5. Quantification of Viral Accumulation
4.6. Sample Processing
4.7. Targeted Metabolite Analysis
4.7.1. Data Treatments
4.7.2. Statistical Analysis
4.8. Untargeted Metabolic Analysis
4.8.1. Quality Control (QC)
4.8.2. Liquid Chromatography
4.8.3. Mass Spectrometry
4.8.4. Data Processing and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging Infectious Diseases of Plants: Pathogen Pollution, Climate Change and Agrotechnology Drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop Pests and Pathogens Move Polewards in a Warming World. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Jones, R.A.C. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Adv. Virus Res. 2016, 95, 87–147. [Google Scholar] [CrossRef]
- Adams, M.J.; King, A.M.; Lefkowitz, E.; Carstens, E.B. Part II: The viruses—Family Potyviridae. In Virus Taxonomy—Ninth Rep. Int. Committee on Taxonomy of Viruses; Elsevier: San Diego, CA, USA, 2011; pp. 1069–1090. [Google Scholar]
- Stare, T.; Ramšak, Ž.; Blejec, A.; Stare, K.; Turnšek, N.; Weckwerth, W.; Wienkoop, S.; Vodnik, D.; Gruden, K. Bimodal Dynamics of Primary Metabolism-Related Responses in Tolerant Potato-Potato Virus Y Interaction. BMC Genom. 2015, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Calvino, L.; Osorio, S.; Hernandez, M.L.; Hamada, I.B.; Del Toro, F.J.; Donaire, L.; Yu, A.; Bustos, R.; Fernie, A.R.; Martinez-Rivas, J.M.; et al. Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco Rattle Virus in Arabidopsis. Plant Physiol. 2014, 166, 1831–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biemelt, S.; Sonnewald, U. Plant-Microbe Interactions to Probe Regulation of Plant Carbon Metabolism. J. Plant Physiol. 2006, 163, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Shalitin, D.; Wang, Y.; Omid, A.; Gal-On, A.; Wolf, S. Cucumber Mosaic Virus Movement Protein Affects Sugar Metabolism and Transport in Tobacco and Melon Plants. Plant Cell Environ. 2002, 25, 989–997. [Google Scholar] [CrossRef]
- Kangasjärvi, S.; Neukermans, J.; Li, S.; Aro, E.-M.; Noctor, G. Photosynthesis, Photorespiration, and Light Signalling in Defence Responses. J. Exp. Bot. 2012, 63, 1619–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handford, M.G.; Carr, J.P. A Defect in Carbohydrate Metabolism Ameliorates Symptom Severity in Virus-Infected Arabidopsis Thaliana. J. Gen. Virol. 2007, 88, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Kogovsek, P.; Pompe-Novak, M.; Petek, M.; Fragner, L.; Weckwerth, W.; Gruden, K. Primary Metabolism, Phenylpropanoids and Antioxidant Pathways Are Regulated in Potato as a Response to Potato Virus Y Infection. PLoS ONE 2016, 11, e0146135. [Google Scholar] [CrossRef]
- Tecsi, L.I.; Smith, A.M.; Maule, A.J.; Leegood, R.C. A Spatial Analysis of Physiological Changes Associated with Infection of Cotyledons of Marrow Plants with Cucumber Mosaic Virus. Plant Physiol. 1996, 111, 975–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llave, C. Dynamic Cross-Talk between Host Primary Metabolism and Viruses during Infections in Plants. Curr. Opin. Virol. 2016, 19, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilar Lopez-Gresa, M.; Lison, P.; Kim, H.K.; Choi, Y.H.; Verpoorte, R.; Rodrigo, I.; Conejero, V.; Maria Belles, J. Metabolic Fingerprinting of Tomato Mosaic Virus Infected Solanum lycopersicum. J. Plant Physiol. 2012, 169, 1586–1596. [Google Scholar] [CrossRef] [Green Version]
- Heaton, N.S.; Randall, G. Multifaceted Roles for Lipids in Viral Infection. Trends Microbiol. 2011, 19, 368–375. [Google Scholar] [CrossRef]
- Wang, A. Dissecting the Molecular Network of Virus-Plant Interactions: The Complex Roles of Host Factors. Annu. Rev. Phytopathol. 2015, 53, 45–66. [Google Scholar] [CrossRef]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary Metabolites in Plant Innate Immunity: Conserved Function of Divergent Chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biol. 2016, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Palukaitis, P.; Yoon, J.-Y.; Choi, S.-K.; Carr, J.P. Manipulation of Induced Resistance to Viruses. Curr. Opin. Virol. 2017, 26, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliebenstein, D.J. Secondary Metabolites and Plant/Environment Interactions: A View through Arabidopsis Thaliana Tinged Glasses. Plant Cell Environ. 2004, 27, 675–684. [Google Scholar] [CrossRef]
- Tian, D.; Traw, M.B.; Chen, J.Q.; Kreitman, M.; Bergelson, J. Fitness Costs of R-Gene-Mediated Resistance in Arabidopsis Thaliana. Nature 2003, 423, 74–77. [Google Scholar] [CrossRef]
- Denance, N.; Sanchez-Vallet, A.; Goffner, D.; Molina, A. Disease Resistance or Growth: The Role of Plant Hormones in Balancing Immune Responses and Fitness Costs. Front. Plant Sci. 2013, 4, 155. [Google Scholar] [CrossRef] [Green Version]
- Neilson, E.H.; Goodger, J.Q.D.; Woodrow, I.E.; Moller, B.L. Plant Chemical Defense: At What Cost? Trends Plant Sci. 2013, 18, 250–258. [Google Scholar] [CrossRef]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano-Duran, R.; Zipfel, C. Trade-off between Growth and Immunity: Role of Brassinosteroids. Trends Plant Sci. 2015, 20, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Karasov, T.L.; Chae, E.; Herman, J.J.; Bergelson, J. Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell 2017, 29, 666–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, T.; Argueso, C.T. Should I Fight or Should I Grow Now? The Role of Cytokinins in Plant Growth and Immunity and in the Growth-Defence Trade-Off. Ann. Bot. 2017, 119, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Bergelson, J.; Purrington, C.B. Surveying Patterns in the Cost of Resistance in Plants. Am. Nat. 1996, 148, 536–558. [Google Scholar] [CrossRef]
- Brown, J.K.M. Yield Penalties of Disease Resistance in Crops. Curr. Opin. Plant Biol. 2002, 5, 339–344. [Google Scholar] [CrossRef]
- Fernandez, O.; Urrutia, M.; Bernillon, S.; Giauffret, C.; Tardieu, F.; Le Gouis, J.; Langlade, N.; Charcosset, A.; Moing, A.; Gibon, Y. Fortune Telling: Metabolic Markers of Plant Performance. Metabolomics 2016, 12, 158. [Google Scholar] [CrossRef] [Green Version]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive Metabolic Profiling and Phenotyping of Interspecific Introgression Lines for Tomato Improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef]
- Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Plant Physiol. 2015, 169, 2665–2683. [Google Scholar] [CrossRef] [Green Version]
- Melandri, G.; AbdElgawad, H.; Riewe, D.; Hageman, J.A.; Asard, H.; Beemster, G.T.S.; Kadam, N.; Jagadish, K.; Altmann, T.; Ruyter-Spira, C.; et al. Biomarkers for Grain Yield Stability in Rice under Drought Stress. J. Exp. Bot. 2020, 71, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.C.; Steinfath, M.; Lisec, J.; Becher, M.; Witucka-Wall, H.; Torjek, O.; Fiehn, O.; Eckardt, A.; Willmitzer, L.; Selbig, J.; et al. The Metabolic Signature Related to High Plant Growth Rate in Arabidopsis Thaliana. Proc. Natl. Acad. Sci. USA 2007, 104, 4759–4764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfath, M.; Strehmel, N.; Peters, R.; Schauer, N.; Groth, D.; Hummel, J.; Steup, M.; Selbig, J.; Kopka, J.; Geigenberger, P.; et al. Discovering Plant Metabolic Biomarkers for Phenotype Prediction Using an Untargeted Approach. Plant Biotechnol. J. 2010, 8, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Korn, M.; Gärtner, T.; Erban, A.; Kopka, J.; Selbig, J.; Hincha, D.K. Predicting Arabidopsis Freezing Tolerance and Heterosis in Freezing Tolerance from Metabolite Composition. Mol. Plant 2010, 3, 224–235. [Google Scholar] [CrossRef]
- Züst, T.; Heichinger, C.; Grossniklaus, U.; Harrington, R.; Kliebenstein, D.J.; Turnbull, L.A. Natural Enemies Drive Geographic Variation in Plant Defenses. Science 2012, 338, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergelson, J.; Roux, F. Towards Identifying Genes Underlying Ecologically Relevant Traits in Arabidopsis Thaliana. Nat. Rev. Genet 2010, 11, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Rubio, B.; Cosson, P.; Caballero, M.; Revers, F.; Bergelson, J.; Roux, F.; Schurdi-Levraud, V. Genome Wide Association Study Reveals New Loci Involved in Arabidopsis Thaliana and Turnip Mosaic Virus (TuMV) Interactions in the Field. New Phytologist 2019, 221, 2026–2038. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.W.; Hancock, A.M.; Huang, Y.S.; Toomajian, C.; Atwell, S.; Auton, A.; Muliyati, N.W.; Platt, A.; Sperone, F.G.; Vilhjalmsson, B.J.; et al. Genome-Wide Patterns of Genetic Variation in Worldwide Arabidopsis Thaliana Accessions from the RegMap Panel. Nat. Genet 2012, 44, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutula, C.L.; Gillett, J.M.; Morrissey, S.M.; Ramsdell, D.C. Interpreting ELISA Data and Establishing the Positive-Negative Threshold. Plant Dis. 1986, 70, 722. [Google Scholar] [CrossRef]
- Pagan, I.; Fraile, A.; Fernandez-Fueyo, E.; Montes, N.; Alonso-Blanco, C.; Garcia-Arenal, F. Arabidopsis Thaliana as a Model for the Study of Plant-Virus Co-Evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1983–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamitani, M.; Nagano, A.J.; Honjo, M.N.; Kudoh, H. RNA-Seq Reveals Virus–Virus and Virus–Plant Interactions in Nature. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, W.L.; Nunes-Nesi, A.; Fernie, A.R. Fumarate: Multiple Functions of a Simple Metabolite. Phytochemistry 2011, 72, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Chia, D.W.; Yoder, T.J.; Reiter, W.-D.; Gibson, S.I. Fumaric Acid: An Overlooked Form of Fixed Carbon in Arabidopsis and Other Plant Species. Planta 2000, 211, 743–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, W. Turgor Pressure. In eLS; American Cancer Society, John Wiley & Sons, Ltd.: Weinheim, Germany, 2017; pp. 1–6. ISBN 978-0-470-01590-2. [Google Scholar]
- Sajitz-Hermstein, M.; Nikoloski, Z. A Novel Approach for Determining Environment-Specific Protein Costs: The Case of Arabidopsis Thaliana. Bioinformatics 2010, 26, i582–i588. [Google Scholar] [CrossRef] [Green Version]
- Kafri, M.; Metzl-Raz, E.; Jona, G.; Barkai, N. The Cost of Protein Production. Cell Rep. 2015, 14, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulpice, R.; Nikoloski, Z.; Tschoep, H.; Antonio, C.; Kleessen, S.; Larhlimi, A.; Selbig, J.; Ishihara, H.; Gibon, Y.; Fernie, A.R.; et al. Impact of the Carbon and Nitrogen Supply on Relationships and Connectivity between Metabolism and Biomass in a Broad Panel of Arabidopsis Accessions. Plant Physiol. 2013, 162, 347–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of Primary Plant Metabolism during Plant-Pathogen Interactions and Its Contribution to Plant Defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Prasch, C.M.; Sonnewald, U. Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks. Plant Physiol. 2013, 162, 1849–1866. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Shigeoka, S. Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirikantaramas, S.; Yamazaki, M.; Saito, K. Mechanisms of Resistance to Self-Produced Toxic Secondary Metabolites in Plants. Phytochem. Rev. 2007, 7, 467. [Google Scholar] [CrossRef]
- Younginger, B.S.; Sirová, D.; Cruzan, M.B.; Ballhorn, D.J. Is Biomass a Reliable Estimate of Plant Fitness? Appl. Plant Sci. 2017, 5. [Google Scholar] [CrossRef]
- Sade, D.; Shriki, O.; Cuadros-Inostroza, A.; Tohge, T.; Semel, Y.; Haviv, Y.; Willmitzer, L.; Fernie, A.R.; Czosnek, H.; Brotman, Y. Comparative Metabolomics and Transcriptomics of Plant Response to Tomato Yellow Leaf Curl Virus Infection in Resistant and Susceptible Tomato Cultivars. Metabolomics 2015, 11, 81–97. [Google Scholar] [CrossRef]
- Cuperlovic-Culf, M.; Wang, L.; Forseille, L.; Boyle, K.; Merkley, N.; Burton, I.; Fobert, P.R. Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties. PLoS ONE 2016, 11, e0153642. [Google Scholar] [CrossRef]
- Felgueiras, M.L.; Lima, M.R.M.; Dias, A.C.P.; Gil, A.M.; Graça, G.; Rodrigues, J.E.A.; Barros, A. NMR Metabolomics of Esca Disease-Affected Vitis Vinifera Cv. Alvarinho Leaves. J. Exp. Bot. 2010, 61, 4033–4042. [Google Scholar] [CrossRef] [Green Version]
- Chandran, D.; Rickert, J.; Huang, Y.; Steinwand, M.A.; Marr, S.K.; Wildermuth, M.C. Atypical E2F Transcriptional Repressor DEL1 Acts at the Intersection of Plant Growth and Immunity by Controlling the Hormone Salicylic Acid. Cell Host Microbe 2014, 15, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliebenstein, D.J. False Idolatry of the Mythical Growth versus Immunity Tradeoff in Molecular Systems Plant Pathology. Physiol. Mol. Plant Pathol. 2016, 95, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Musseau, C.; Jorly, J.; Gadin, S.; Sørensen, I.; Deborde, C.; Bernillon, S.; Mauxion, J.-P.; Atienza, I.; Moing, A.; Lemaire-Chamley, M.; et al. The Tomato Guanylate-Binding Protein SlGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. Plant Cell 2020, 32, 3188. [Google Scholar] [CrossRef] [PubMed]
- Luna, E.; Flandin, A.; Cassan, C.; Prigent, S.; Chevanne, C.; Kadiri, C.F.; Gibon, Y.; Pétriacq, P. Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites 2020, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Rusak, G.; Krajačić, M.; Pleše, N. Inhibition of Tomato Bushy Stunt Virus Infection Using a Quercetagetin Flavonoid Isolated from Centaurea rupestris L. Antivir. Res. 1997, 36, 125–129. [Google Scholar] [CrossRef]
- Zhao, W.; Zeng, X.; Zhang, T.; Wang, L.; Yang, G.; Chen, Y.-K.; Hu, Q.; Miao, M. Flavonoids from the Bark and Stems of Cassia Fistula and Their Anti-Tobacco Mosaic Virus Activities. Phytochem. Lett. 2013, 6, 179–182. [Google Scholar] [CrossRef]
- Kronheim, S.; Daniel-Ivad, M.; Duan, Z.; Hwang, S.; Wong, A.I.; Mantel, I.; Nodwell, J.R.; Maxwell, K.L. A Chemical Defence against Phage Infection. Nature 2018, 564, 283–286. [Google Scholar] [CrossRef]
- Jenner, C.E.; Walsh, J.A. Pathotypic Variation in Turnip Mosaic Virus with Special Reference to European Isolates. Plant Pathol. 1996, 45, 848–856. [Google Scholar] [CrossRef]
- Boyes, D.C.; Zayed, A.M.; Ascenzi, R.; McCaskill, A.J.; Hoffman, N.E.; Davis, K.R.; Gorlach, J. Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants. Plant Cell 2001, 13, 1499–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geigenberger, P.; Lerchi, J.; Stitt, M.; Sonnewald, U. Phloem-Specific Expression of Pyrophosphatase Inhibits Long Distance Transport of Carbohydrates and Amino Acids in Tobacco Plants. Plant Cell Environ. 1996, 19, 43–55. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stitt, M.; Quick, P. Photosynthetic Carbon Partitioning: Its Regulation and Possibilities for Manipulation. Physiol. Plant. 1989, 77, 633–641. [Google Scholar] [CrossRef]
- Nunes-Nesi, A.; Carrari, F.; Gibon, Y.; Sulpice, R.; Lytovchenko, A.; Fisahn, J.; Graham, J.; Ratcliffe, R.G.; Sweetlove, L.J.; Fernie, A.R. Deficiency of Mitochondrial Fumarase Activity in Tomato Plants Impairs Photosynthesis via an Effect on Stomatal Function: Inhibition of Fumarase Impairs Photosynthesis. Plant J. 2007, 50, 1093–1106. [Google Scholar] [CrossRef]
- Zhang, N.; Gibon, Y.; Wallace, J.G.; Lepak, N.; Li, P.; Dedow, L.; Chen, C.; So, Y.-S.; Kremling, K.; Bradbury, P.J.; et al. Genome-Wide Association of Carbon and Nitrogen Metabolism in the Maize Nested Association Mapping Population. Plant Physiol. 2015, 168, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bantan-Polak, T.; Kassai, M.; Grant, K.B. A Comparison of Fluorescamine and Naphthalene-2,3-Dicarboxaldehyde Fluorogenic Reagents for Microplate-Based Detection of Amino Acids. Anal. Biochem. 2001, 297, 128–136. [Google Scholar] [CrossRef]
- Hendriks, J.H.; Kolbe, A.; Gibon, Y.; Stitt, M.; Geigenberger, P. ADP-Glucose Pyrophosphorylase Is Activated by Posttranslational Redox-Modification in Response to Light and to Sugars in Leaves of Arabidopsis and Other Plant Species. Plant Physiol. 2003, 133, 838–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Rohart, F.; Gautier, B.; Singh, A.; Le Cao, K.-A. MixOmics: An R Package for omics Feature Selection and Multiple Data Integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehrens, R.; Mevik, B.-H. The Pls Package: Principal Component and Partial Least Squares Regression in R. J. Stat. Softw. 2007, 18, 1–23. [Google Scholar]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.J.; Tautenhahn, R.; Siuzdak, G. Meta-Analysis of Untargeted Metabolomic Data from Multiple Profiling Experiments. Nat. Protoc. 2012, 7, 508–516. [Google Scholar] [CrossRef] [Green Version]
Genotype | ID 1 | Latitude | Longitude | Country | OD Means | OD- Standard Deviations | Susceptibility Groups 2 |
---|---|---|---|---|---|---|---|
Bay-0 | 6899 | 49 | 11 | GER | 0.004 | 0.0155 | R |
Mar2-3 | 159 | 47.35 | 3.93333 | FRA | 0.005 | 0.0087 | R |
MIB-39 | 190 | 47.3833 | 5.31667 | FRA | 0.007 | 0.0155 | R |
Petergof | 7296 | 59 | 29 | RUS | 0.011 | 0.0252 | R |
Ra-0 | 6958 | 46 | 3.3 | FRA | 0.003 | 0.0072 | R |
Rak-2 | 8365 | 49 | 16 | CZE | 0.006 | 0.00204 | R |
TOU-A1-69 | 335 | 46.6667 | 4.11667 | FRA | 0.015 | 0.0224 | R |
TOU-A1-84 | 348 | 46.6667 | 4.11667 | FRA | 0.007 | 0.0204 | R |
Edi-0 | 6914 | 56 | −3 | UK | 0.258 | 0.169 | S |
Bg-2 | 6709 | 47.6479 | −122.305 | USA | 0.324 | 0.211 | S |
MIB-62 | 206 | 47.3833 | 5.31667 | FRA | 0.346 | 0.2084 | S |
Gu-0 | 6922 | 50.3 | 8 | GER | 0.389 | 0.272 | S |
Col-0 | 6909 | 38.3 | −92.3 | USA | 0.391 | 0.215 | S |
Bu-0 | 8271 | 50.5 | 9.5 | GER | 0.4 | 0.203 | S |
TOU-A1-125 | 291 | 46.6667 | 4.11667 | FRA | 0.403 | 0.147 | S |
TOU-L-5 | 389 | 46.6667 | 4.11667 | FRA | 0.407 | 0.19 | S |
MIB-60 | 204 | 47.3833 | 5.31667 | FRA | 0.425 | 0.145 | S |
MIB-28 | 178 | 47.3833 | 5.31667 | FRA | 0.428 | 0.242 | S |
Hs-0 | 8310 | 52.24 | 9.44 | GER | 0.46 | 0.212 | S |
Mt-0 | 6939 | 32.34 | 22.46 | LIB | 0.467 | 0.2 | S |
MIB-20 | 171 | 47.3833 | 5.31667 | FRA | 0.525 | 0.294 | S |
MIB-67 | 210 | 47.3833 | 5.31667 | FRA | 0.549 | 0.249 | S |
TOU-A1-73 | 338 | 46.6667 | 4.11667 | FRA | 0.55 | 0.261 | S |
CUR-10 | 79 | 45 | 1.75 | FRA | 0.576 | 0.147 | S |
Mz-0 | 6940 | 50.3 | 8.3 | GER | 0.59 | 0.263 | S |
Bs-1 | 8270 | 47.5 | 7.5 | SUI | 0.66 | 0.339 | S |
VIP OPLS-DA 1 | VIP Values | m/z2 | rt 3 | Resistant vs. Susceptible Metabolic Contents | Fold Change |
---|---|---|---|---|---|
Sucrose | 2.213 | NA | NA | S > R *** 4 | 2.89 |
303;463 | 1.973 | 303.133 | 463.27 | S > R *** | 3.69 |
356;452 | 1.958 | 356.12 | 452.352 | S > R *** | 2.17 |
219;311 | 1.94 | 219.101 | 311.134 | S > R *** | 4.81 |
533;392 | 1.926 | 533.155 | 391.765 | S > R *** | 4.98 |
332;430 | 1.898 | 332.132 | 430.481 | S > R *** | 3.78 |
116;100 | 1.867 | 116.07 | 100.163 | S > R *** | 6.05 |
205;242 | 1.837 | 205.097 | 242.121 | S > R *** | 2.51 |
103;242 | 1.799 | 103.041 | 242.089 | S > R *** | 2.86 |
302;506 | 1.796 | 302.102 | 506.314 | S > R *** | 5.76 |
255;544 | 1.769 | 255.112 | 543.799 | S > R *** | 9.96 |
221;216 | 1.748 | 221.092 | 215.744 | S > R *** | 3.13 |
385;210 | 1.738 | 385.106 | 210.083 | S > R *** | 45.77 |
Glucose | 1.734 | NA | NA | S > R *** | 2.49 |
175;402 | 1.713 | 175.148 | 401.831 | S > R *** | 3.77 |
903;319 | 1.71 | 903.277 | 318.889 | S > R *** | 8.48 |
503;391 | 1.695 | 503.19 | 391.457 | S > R *** | 2.51 |
343;345 | 1.693 | 343.117 | 345.319 | S > R *** | 2.08 |
Fructose | 1.683 | NA | NA | S > R *** | 2.49 |
474;107 | 1.675 | 474.218 | 107.298 | S > R *** | 2.68 |
315;448 | 1.674 | 315.133 | 447.821 | S > R *** | 2.39 |
209;488 | 1.669 | 209.153 | 488.35 | S > R *** | 2.7 |
209;414 | 1.663 | 209.153 | 413.756 | S > R *** | 2.14 |
212;284 | 1.657 | 211.559 | 283.891 | S > R *** | 1.56 |
543;99 | 1.645 | 543.132 | 98.5221 | S > R *** | 5.84 |
124;346 | 1.638 | 124.075 | 346.354 | S > R *** | 1.92 |
370;302 | 1.61 | 370.149 | 301.519 | S > R *** | 28.49 |
203;204 | 1.591 | 203.084 | 203.918 | S > R *** | 8.24 |
Glutamate | 1.59 | NA | NA | S > R *** | 1.47 |
430;333 | 1.581 | 430.17 | 332.878 | S > R *** | 3.3 |
331;329 | 1.578 | 331.117 | 328.817 | S > R *** | 1.58 |
226;406 | 1.554 | 226.107 | 406.369 | S > R *** | 7.97 |
151;359 | 1.549 | 151.075 | 359.377 | S > R *** | 1.78 |
449;319 | 1.545 | 449.106 | 318.949 | S > R *** | 1.75 |
757;319 | 1.537 | 757.217 | 319.13 | S > R *** | 1.69 |
270;587 | 1.534 | 270.133 | 587.091 | S > R *** | 43.68 |
315;370 | 1.524 | 315.133 | 370.476 | S > R *** | 3.93 |
162;402 | 1.511 | 162.055 | 402.281 | S > R *** | 1.9 |
221;230 | 1.503 | 221.121 | 230.244 | S > R *** | 1.74 |
394;517 | 1.49 | 394.204 | 517.072 | S > R *** | 17.28 |
302;407 | 1.486 | 302.101 | 406.697 | S > R *** | 7.16 |
482;101 | 1.475 | 482.107 | 101.274 | S > R *** | 1.79 |
Amino Acids | 1.462 | NA | NA | S > R *** | 1.88 |
355;306 | 1.451 | 355.102 | 306.288 | S > R *** | 3.29 |
191;416 | 1.448 | 191.143 | 416.467 | S > R *** | 2.49 |
193;324 | 1.445 | 193.125 | 323.817 | S > R *** | 1.46 |
149;360 | 1.437 | 149.096 | 360.18 | S > R *** | 1.66 |
642;445 | 1.435 | 642.254 | 445.078 | S > R *** | 2 |
321;760 | 1.419 | 321.114 | 760.442 | S > R *** | 3.7 |
182;466 | 1.415 | 182.081 | 465.796 | S > R *** | 4.21 |
305;210 | 1.408 | 305.086 | 210.166 | S > R *** | 2.24 |
348;319 | 1.396 | 348.274 | 318.945 | S > R *** | 3.61 |
164;496 | 1.375 | 164.07 | 496.307 | S > R *** | 2.22 |
165;424 | 1.372 | 165.127 | 424.14 | S > R *** | 1.54 |
317;464 | 1.37 | 317.101 | 463.65 | S > R *** | 1.25 |
191;363 | 1.36 | 191.07 | 362.643 | S > R *** | 2.76 |
219;486 | 1.34 | 219.101 | 486.477 | S > R *** | 2.7 |
105;700 | 1.33 | 105.069 | 700.287 | S > R *** | 1.59 |
367;358 | 1.323 | 367.101 | 358.491 | S > R *** | 1.69 |
201;344 | 1.319 | 201.054 | 343.832 | S > R *** | 1.71 |
189;325 | 1.312 | 189.127 | 324.754 | S > R *** | 1.74 |
146;242 | 1.311 | 146.06 | 241.843 | S > R *** | 2.31 |
133;296 | 1.307 | 133.064 | 295.68 | S > R *** | 2.65 |
179;604 | 1.306 | 179.106 | 603.961 | S > R *** | 1.64 |
374;322 | 1.305 | 374.144 | 321.703 | S > R *** | 1.77 |
373;453 | 1.29 | 373.127 | 452.6 | S > R *** | 1.81 |
302;382 | 1.282 | 302.041 | 381.707 | S > R *** | 1.54 |
161;442 | 1.274 | 161.096 | 441.797 | S > R *** | 1.79 |
164;375 | 1.269 | 164.07 | 375.012 | S > R *** | 2.95 |
109;359 | 1.267 | 109.064 | 359.34 | S > R *** | 1.92 |
386;278 | 1.256 | 386.22 | 277.549 | S > R *** | 3.48 |
391;774 | 1.255 | 391.245 | 774.477 | S > R *** | 2.29 |
409;491 | 1.251 | 409.169 | 490.545 | S > R *** | 27.12 |
291;259 | 1.241 | 291.181 | 259.063 | S > R *** | 4.78 |
192;462 | 1.227 | 192.041 | 462.37 | S > R *** | 1.27 |
107;370 | 1.219 | 107.085 | 370.001 | S > R *** | 1.39 |
420;276 | 1.217 | 419.695 | 275.797 | S > R *** | 1.77 |
193;373 | 1.189 | 193.086 | 373.266 | S > R *** | 2.04 |
379;402 | 1.179 | 379.095 | 402.311 | S > R *** | 2.88 |
181;464 | 1.176 | 181.086 | 463.916 | S > R *** | 1.42 |
181;328 | 1.17 | 181.086 | 327.894 | S > R *** | 1.68 |
80;395 | 1.168 | 80.049 | 395.289 | S > R *** | 1.57 |
373;344 | 1.16 | 373.127 | 343.531 | S > R *** | 1.54 |
627;299 | 1.156 | 627.155 | 299.369 | S > R *** | 2.8 |
96;389 | 1.155 | 96.08 | 389.004 | S > R *** | 1.74 |
195;453 | 1.154 | 195.065 | 452.614 | S > R *** | 1.55 |
79;396 | 1.152 | 79.041 | 395.754 | S > R *** | 1.52 |
105;327 | 1.15 | 105.069 | 326.898 | S > R *** | 1.72 |
210;465 | 1.147 | 210.112 | 464.799 | S > R *** | 2.44 |
335;506 | 1.143 | 335.127 | 506.441 | S > R *** | 3.71 |
86;126 | 1.114 | 86.096 | 126.246 | S > R *** | 2.09 |
396;257 | 1.106 | 396.185 | 256.51 | S > R *** | 1.43 |
611;354 | 1.102 | 611.158 | 353.603 | S > R *** | 1.34 |
178;191 | 1.102 | 178.089 | 191.013 | S > R *** | 3.43 |
169;496 | 1.101 | 169.049 | 495.5 | S > R *** | 3.67 |
162;249 | 1.098 | 162.055 | 249.101 | S > R *** | 1.5 |
396;348 | 1.092 | 396.115 | 347.739 | S > R *** | 4.14 |
103;389 | 1.086 | 103.054 | 389.444 | S > R *** | 2 |
521;325 | 1.084 | 521.201 | 325.328 | S > R *** | 2.52 |
133;126 | 1.072 | 133.105 | 126.347 | S > R ** | 2.32 |
209;426 | 1.071 | 209.153 | 425.939 | S > R *** | 1.98 |
162;357 | 1.069 | 162.055 | 356.879 | S > R *** | 1.74 |
201;451 | 1.063 | 201.054 | 451.123 | S > R *** | 1.75 |
527;460 | 1.056 | 527.103 | 460.095 | S > R *** | 2.02 |
Fumarate | 1.054 | NA | NA | S > R *** | 1.38 |
393;416 | 1.052 | 393.188 | 415.816 | S > R *** | 1.71 |
212;774 | 1.052 | 212.094 | 774.047 | S > R *** | 2.76 |
402;420 | 1.048 | 402.162 | 419.597 | S > R ** | 1.87 |
404;388 | 1.038 | 404.227 | 388.155 | S > R ** | 1.31 |
464;367 | 1.035 | 464.248 | 366.989 | S > R *** | 1.97 |
225;371 | 1.034 | 225.148 | 370.798 | S > R *** | 1.57 |
103;284 | 1.033 | 103.054 | 283.823 | S > R *** | 3.26 |
227;789 | 1.023 | 227.163 | 788.506 | S > R *** | 1.61 |
222;216 | 1.016 | 221.602 | 215.822 | S > R ** | 1.33 |
367;342 | 1.011 | 367.153 | 341.908 | S > R *** | 1.96 |
302;463 | 1.006 | 302.102 | 463.078 | S > R *** | 1.49 |
309;325 | 1.003 | 309.116 | 324.659 | S > R ** | 1.44 |
244;325 | 1.001 | 244.096 | 324.677 | S > R ** | 1.41 |
351;184 | 2.047 | 351.006 | 184.222 | R > S *** | 2.88 |
432;184 | 1.831 | 431.971 | 183.776 | R > S *** | 3.44 |
137;131 | 1.618 | 136.931 | 131.31 | R > S *** | 1.39 |
512;491 | 1.563 | 512.127 | 491.367 | R > S *** | 2.54 |
394;108 | 1.548 | 394.2 | 108.419 | R > S *** | 1.93 |
337;573 | 1.51 | 337.292 | 572.917 | R > S *** | 1.64 |
299;181 | 1.396 | 299.098 | 181.363 | R > S *** | 22.3 |
181;139 | 1.293 | 181.053 | 138.934 | R > S *** | 1.94 |
324;184 | 1.263 | 323.989 | 183.797 | R > S *** | 106.8 |
280;184 | 1.229 | 280.084 | 183.768 | R > S *** | 5.9 |
361;491 | 1.218 | 361.092 | 490.564 | R > S *** | 2.07 |
155;132 | 1.141 | 154.941 | 131.541 | R > S *** | 1.33 |
433;482 | 1.114 | 433.112 | 481.588 | R > S *** | 244 |
433;700 | 1.109 | 433.241 | 700.261 | R > S *** | 1.82 |
64;395 | 1.091 | 63.934 | 395.047 | R > S *** | 3.6 |
256;668 | 1.089 | 256.08 | 667.874 | R > S *** | 2.12 |
460;740 | 1.076 | 460.269 | 740.005 | R > S ** | 1.42 |
449;442 | 1.069 | 449.107 | 442.311 | R > S *** | 6.17 |
244;130 | 1.049 | 243.942 | 130.167 | R > S *** | 1.35 |
347;240 | 1.039 | 347.159 | 239.659 | R > S ** | 1.48 |
86;184 | 1.015 | 86.059 | 184.278 | R > S *** | 1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio, B.; Fernandez, O.; Cosson, P.; Berton, T.; Caballero, M.; Lion, R.; Roux, F.; Bergelson, J.; Gibon, Y.; Schurdi-Levraud, V. Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites 2021, 11, 230. https://doi.org/10.3390/metabo11040230
Rubio B, Fernandez O, Cosson P, Berton T, Caballero M, Lion R, Roux F, Bergelson J, Gibon Y, Schurdi-Levraud V. Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites. 2021; 11(4):230. https://doi.org/10.3390/metabo11040230
Chicago/Turabian StyleRubio, Bernadette, Olivier Fernandez, Patrick Cosson, Thierry Berton, Mélodie Caballero, Roxane Lion, Fabrice Roux, Joy Bergelson, Yves Gibon, and Valérie Schurdi-Levraud. 2021. "Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions" Metabolites 11, no. 4: 230. https://doi.org/10.3390/metabo11040230
APA StyleRubio, B., Fernandez, O., Cosson, P., Berton, T., Caballero, M., Lion, R., Roux, F., Bergelson, J., Gibon, Y., & Schurdi-Levraud, V. (2021). Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites, 11(4), 230. https://doi.org/10.3390/metabo11040230