Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Quality Assessment of Studies
3. Results
3.1. Characteristics of Studies
3.2. Circulating microRNA Expression in Children with Obesity
3.3. Circulating microRNA Expression in Preadolescents and Adolescents with Obesity and Metabolic Syndrome
3.4. Circulating microRNA Expression in Adults with Obesity without Metabolic Diseases Associated
3.5. Circulating microRNA in Metabolic Syndrome and Associated Factors
3.6. Circulating microRNA in Adults and Older Adults with Type 2 Diabetes
3.7. Assessment of the Quality of Studies in the Systematic Review
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Malta, D.C.; Andrade, S.S.C.A.; Oliveira, T.P.; Moura, L.; Prado, R.R.; Souza, M.F.M. Probability of premature death for chronic non-communicable diseases, Brazil and Regions, projections to 2025. Rev. Bras. Epidemiol. 2019, 1, e190030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 25, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelishadi, R.; Mirmoghtadaee, P.; Najafi, K.M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J. Res. Med. 2015, 20, 294–307. [Google Scholar]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Oses, M.; Sanchez, J.M.; Portillo, M.P.; Aguilera, C.M.; Labayen, I. Circulating miRNAs as Biomarkers of Obesity and Obesity-Associated Comorbidities in Children and Adolescents: A Systematic Review. Nutrients 2019, 27, 2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, K.J.C.; Oliveira, A.R.S.; Morais, J.B.S.; Severo, J.S.; Marreiro, D.N. Role of microRNA on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition 2017, 35, 28–35. [Google Scholar] [CrossRef]
- Quintanilha, B.J.; Reis, B.Z.; Duarte, G.B.S.; Cozzolino, S.M.F.; Rogero, M.M. Nutrimiromics: Role of microRNA and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017, 9, 1168. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tsai, P.; Liao, Y.; Hsu, C.Y.; Hank Juo, S.H. Circulating microRNA have a sex-specific association with metabolic syndrome. J. Biomed. Sci. 2013, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Prats-Puig, A.; Ortega, F.J.; Mercader, J.M.; Moreno-Navarrete, J.M.; Moreno, M.; Bonet, N.; Ricart, W.; López-Bermejo, A.; Fernández-Real, J.M. Changes in circulating microRNA are associated with childhood obesity. J. Clin. Endocrinol. Metab. 2013, 98, E1655–E1660. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, X.; Shan, P.F. MicroRNA and Cardiovascular Disease in Diabetes Mellitus. Biomed. Res. Int. 2017, 2017, 4080364. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; You, L.; Zhu, L.; Wang, X.; Zhou, Y.; Li, Y.; Wen, J.; Xia, Y.; Wang, X.; Ji, C.; et al. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism 2018, 78, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rawaf, H.A. Circulating microRNA and adipokines as markers of metabolic syndrome in adolescents with obesity. Clin. Nutr. 2019, 38, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, G.; Russo, P.; Marena, P.; Lauria, F.; Venezia, A.; Ahrens, W.; de Henauw, S.; de Luca, P.; Foraita, R.; Günther, K.; et al. Circulating microRNA are associated with early childhood obesity: Results of the I.Family Study. Genes Nutr. 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiat, D.; Olson, E.E.N. MicroRNA in cardiovascular disease: From pathogenesis to prevention and treatment. J. Clin. Investig. 2013, 123, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, R.; Ghorbani, S.; Alipoor, B.; Panahi, G.; Khodabandehloo, H.; Esfahani, E.N.; Razi, F.; Meshkani, R. Decreased Serum Level of miR-155 is Associated with Obesity and its Related Metabolic Traits. Clin. Lab 2018, 64, 77–84. [Google Scholar] [CrossRef]
- Sucharita, S.; Ashwini, V.; Prabhu, J.S.; Avadhany, S.T.; Ayyar, V.; Bantwal, G. The Role of Circulating MicroRNA in the Regulation of Beta Cell Function and Insulin Resistance among Indians with Type 2 Diabetes. Indian J. Endocrinol. Metab. 2018, 22, 770–773. [Google Scholar] [CrossRef]
- Williams, A.; McDougal, D.; Jenkins, W.; Greene, N.; Williams-DeVane, C.; Kimbro, K.S. Serum miR-17 levels are downregulated in obese, African American women with elevated HbA1c. J. Diabetes Metab. Disord. 2019, 9, 173–179. [Google Scholar] [CrossRef]
- Krause, B.J.; Carrasco-Wong, I.; Dominguez, A.; Arnaiz, P.; Farías, M.; Barja, S.; Mardones, F.; Casanello, P. Micro-RNAs Let7e and 126 in Plasma as Markers of Metabolic Dysfunction in 10 to 12 Years Old Children. PLoS ONE 2015, 5, e0128140. [Google Scholar] [CrossRef]
- Zaki, M.B.; Abulsoud, A.I.; Elsisi, A.M.; Doghish, A.S.; Mansour, O.A.E.; Amin, A.I.; Elrebehy, M.A.; Mohamed, M.Y.; Goda, M.A. Potential role of circulating microRNA (486-5p, 497, 509-5p and 605) in metabolic syndrome Egyptian male patients. Diabetes Metab. Syndr. Obes. 2019, 6, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, J.G.; Diehl, K.J.; Bammert, T.D.; Kavlich, P.J.; Lincenberg, G.M.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Association between hypertension and circulating vascular-related microRNA. J. Hum. Hypertens. 2018, 32, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Badawy, H.K.; Abo-Elmatty, D.M.; Mesbah, N.M. Association between serum microRNA-605 and microRNA-623 expression and essential hypertension in Egyptian patients. Meta Gene 2018, 16, 62–65. [Google Scholar] [CrossRef]
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willeit, P.; Skroblin, P.; Moschen, A.R.; Yin, X.; Kaudewitz, D.; Zampetaki, A.; Barwari, T.; Whitehead, M.; Ramírez, C.M.; Goedeke, L.; et al. Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 2017, 66, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.J.; Mercader, J.M.; Moreno-Navarrete, J.M.; Rovira, O.; Guerra, E.; Esteve, E.; Xifra, G.; Martínez, C.; Ricart, W.; Rieusset, J.; et al. Profiling of Circulating MicroRNA Reveals Common MicroRNA Linked to Type 2 Diabetes That Change With Insulin Sensitization. Diabetes Care 2014, 37, 1375–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 10, 89. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of Observational Studies in Epidemiology: A Proposal for Reporting. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Landis, J.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liu, M.; Li, J.; Wu, B.; Tian, W.; Shi, L.; Zhang, J.; Sun, Z. The inverted pattern of circulating miR-221-3p and miR-222-3p associated with isolated low HDL-C phenotype. Lipids Health Dis. 2018, 16, 188. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, J.G.; Diehl, K.J.; Bammert, T.D.; Kavlich, P.J.; Lincenberg, G.M.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Influence of Overweight and Obesity on Circulating Inflammation-Related microRNA. MicroRNA 2018, 7, 148–154. [Google Scholar] [CrossRef]
- Wang, R.; Hong, J.; Cao, Y.; Shi, J.; Gu, W.; Ning, G.; Zhang, Y.; Wang, W. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur. J. Endocrinol. 2015, 172, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, C.; Nakatsuka, A.; Eguchi, J.; Teshigawara, S.; Kanzaki, M.; Katayama, A.; Yamaguchi, S.; Takahashi, N.; Murakami, K.; Ogawa, D.; et al. Identification of Circulating miR-101, miR-375 and miR-802 as Biomarkers for Type 2 Diabetes. Metab. Clin. Exp. 2015, 64, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, Y.; Bao, W.; Shan, Z.; Liu, J.; Yu, X.; Xia, S.; Gao, H.; Wang, X.; Yao, P.; Hu, F.B.; et al. Increased MicroRNA-146a Levels in Plasma of Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLoS ONE 2013, 2, e73272. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, N.; Niculescu, L.S.; Sanda, G.M.; Margina, D.; Sima, A.V. Analysis of circulating microRNA that are specifically increased in hyperlipidemic and/or hyperglycemic sera. Mol. Biol. Rep. 2014, 41, 5765–5773. [Google Scholar] [CrossRef]
- Corona-Meraz, F.I.; Vázquez-Del Mercado, M.; Ortega, F.J.; Ruiz-Quezada, S.L.; Guzmán-Ornelas, M.O.; Navarro-Hernández, R.E. Ageing influences the relationship of circulating miR-33a and miR-33b levels with insulin resistance and adiposity. Diabetes Vasc. Dis. Res. 2019, 16, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, Y.O.N.; Garufi, G.; Seyhan, A.A. Altered levels of circulating cytokines and microRNA in lean and obese individuals with prediabetes and type 2 diabetes. Mol. BioSyst. 2016, 20, 106–121. [Google Scholar] [CrossRef]
- Candia, P.; Spinetti, G.; Specchia, C.; Sangalli, E.; Sala, L.L.; Uccellatore, A.; Lupini, S.; Genovese, S.; Matarese, G.; Ceriello, A. A unique plasma microRNA profile defines type 2 diabetes progression. PLoS ONE 2017, 4, e0188980. [Google Scholar] [CrossRef] [Green Version]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Aravind, S.; Mahalingam, B.; Shanthirani, C.S.; Gastebois, C.; Villard, A.; Mohan, V.; Balasubramanyam, M. Circulating MiRNAs of ‘Asian Indian Phenotype’ Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes. PLoS ONE 2015, 28, e0128372. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, S.; Mahdavi, R.; Alipoor, B.; Panahi, G.; Esfahani, E.N.; Razi, F.; Taghikhani, M.; Meshkani, R. Decreased serum microRNA-21 level is associated with obesity in healthy and type 2 diabetic subjects. Arch. Physiol. Biochem. 2018, 124, 300–305. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- National Institutes of Health. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. 2014. Available online: https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-riskreduction/tools/cohort (accessed on 27 September 2020).
- Yadav, H.; Quijano, C.; Kamaraju, A.K.; Gavrilova, O.; Malek, R.; Chen, W.; Zerfas, P.; Zhigang, D.; Wright, E.C.; Stuelten, C.; et al. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab. 2011, 6, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020, 16, 349–362. [Google Scholar] [CrossRef]
- Joglekar, M.V.; Parekh, V.S.; Hardikar, A.A. Islet-specific microRNA in pancreas development, regeneration and diabetes. Indian J. Exp. Biol. 2011, 49, 401–408. [Google Scholar] [PubMed]
- Landrier, J.F.; Derghal, A.; Mounien, L. MicroRNA in Obesity and Related Metabolic Disorders. Cells 2019, 9, 859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacomino, G.; Siani, A. Role of microRNA in obesity and obesity-related diseases. Genes Nutr. 2017, 25, 23. [Google Scholar] [CrossRef] [Green Version]
- Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 15, 12481–12486. [Google Scholar] [CrossRef] [Green Version]
- Quinn, S.R.; O’Neill, L.A. A trio of microRNA that control Toll-like receptor signalling. Int. Immunol. 2011, 23, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanyam, M.; Aravind, S.; Kuppan, G.; Prabu, P.; Sathishkumar, C.; Ranjani, H.; Mohan, V. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol. Cell. Biochem. 2011, 351, 197–205. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Zeinali, F.; Aghaei Zarch, S.M.; Jahan-Mihan, A.; Kalantar, S.M.; Vahidi Mehrjardi, M.Y.; Fallahzadeh, H.; Hosseinzadeh, M.; Rahmanian, M.; Mozaffari-Khosravi, H. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS ONE 2021, 2, e0251697. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Lin, J.; Hongxuan, Z. miR-126: A novel regulator in colon cancer. Biomed. Rep. 2016, 4, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Rottiers, V.; Näär, A.M. MicroRNA in metabolism and metabolic disorders. Nat. Rev. Mol. Cell. Biol. 2012, 22, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Jansen, F.; Yang, X.; Hoelscher, M.; Cattelan, A.; Schmitz, T.; Proebsting, S.; Wenzel, D.; Vosen, S.; Franklin, B.S.; Fleischmann, B.K.; et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013, 29, 2026–2038. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.Z.; Fan, H.M. Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2725–2733. [Google Scholar]
- Arner, P.; Kulyte, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 2015, 11, 276–288. [Google Scholar] [CrossRef]
- Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNA in type 2 diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Schober, A.; Nazari-Jahantigh, M.; Wei, Y.; Bidzhekov, K.; Gremse, F.; Grommes, J.; Megens, R.T.A.; Heyll, K.; Noels, H.; Hristov, M.; et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med. 2014, 20, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Santovito, D.; Egea, V.; Bidzhekov, K.; Natarelli, L.; Mourão, A.; Blanchet, X.; Wichapong, K.; Aslani, M.; Brunßen, C.; Horckmans, M.; et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl. Med. 2020, 3, eaaz2294. [Google Scholar] [CrossRef]
- Alexander, M.S.; Casar, J.C.; Motohashi, N.; Vieira, N.M.; Eisenberg, I.; Marshall, J.L.; Gasperini, M.J.; Lek, A.; Myers, J.A.; Estrella, E.A.; et al. MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. J. Clin. Investig. 2014, 124, 2651–2667. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, J.; Yu, J.; Liu, B.; Guo, Y.; Deng, J.; Chen, S.; Wang, C.; Guo, F. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J. Biol. Chem. 2015, 290, 8185–8195. [Google Scholar] [CrossRef] [PubMed]
- Gorospe, M.; Abdelmohsen, K. MicroRegulators come of age in senescence. Trends Genet. 2011, 27, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yang, H.; Zhang, C.; Jing, Y.; Wang, C.; Liu, C.; Zhang, R.; Wang, J.; Zhang, J.; Zen, K.; et al. Investigation of MicroRNA Expression in Human Serum During the Aging Process. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Dumortier, O.; Fabris, G.; Van Obberghen, E. Shaping and preserving beta-cell identity with microRNA. Diabetes Obes. Metab. 2016, 18, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Sanchez, A.; Rutter, G.A.; Latreille, M. miRNAs in beta-cell development, identity, and disease. Front. Genet. 2017, 11, 226. [Google Scholar] [CrossRef] [Green Version]
- Calderari, S.; Diawara, M.R.; Garaud, A.; Gauguier, D. Biological roles of microRNA in the control of insulin secretion and action. Physiol. Genomics 2017, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Catanzaro, G.; Besharat, Z.M.; Chiacchiarini, M.; Abballe, L.; Sabato, C.; Vacca, A.; Borgiani, P.; Dotta, F.; Tesauro, M.; Po, A.; et al. Circulating MicroRNA in Elderly Type 2 Diabetic Patients. Int. J. Endocrinol. 2018, 10, 6872635. [Google Scholar] [CrossRef]
- Wang, G.; Lin, F.; Wan, Q.; Wu, J.; Luo, M. Mechanisms of action of metformin and its regulatory effect on microRNA related to angiogenesis. Pharmacol. Res. 2021, 164, 105390. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Zare, V.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. Antidiabetic potential of saffron and its active constituents. J. Cell. Physiol. 2019, 234, 8610–8617. [Google Scholar] [CrossRef]
- Solayman, M.H.; Langaee, T.Y.; Gong, Y.; Shahin, M.H.; Turner, S.T.; Chapman, A.B.; Gums, J.G.; Boerwinkle, E.; Beitelshees, A.L.; El-Hamamsy, M.; et al. Effect of plasma MicroRNA on antihypertensive response to beta blockers in the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) studies. Eur. J. Pharm. Sci. 2019, 131, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Ling, S.; Castillo, A.C.; Thomas, B.; Long, B.; Qian, J.; Perez-Polo, J.R.; Ye, Y.; Chen, X.; Birnbaum, Y. Nebivolol Induces Distinct Changes in Profibrosis MicroRNA Expression Compared With Atenolol, in Salt-Sensitive Hypertensive Rats. Hypertension 2013, 61, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, Q.; Ma, X.; Wang, J.; Liang, T. miRNA and mRNA expression analysis reveals potential sex biased miRNA expression. Sci. Rep. 2017, 7, 39812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Eghbali, M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex. Differ. 2014, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.J.; Wang, Y.F.; Yang, W. Sex-Interacting mRNA and miRNA-eQTLs and Their Implications in Gene Expression Regulation and Disease. Front. Genet. 2019, 9, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santovito, D.; Weber, C. Zooming in on microRNA for refining cardiovascular risk prediction in secondary prevention. Eur. Heart J. 2017, 38, 524–528. [Google Scholar] [CrossRef]
Author/Year | Country | Presence of Diseases | Pharmacological Treatment | Total Sample (M/F) | Case Group (M/F) | Control Group (M/F) | Age (Years) | BMI (kg/m2) | General Factors | Analysis Adjustment |
---|---|---|---|---|---|---|---|---|---|---|
Children | ||||||||||
Cui et al., 2018 & [12] | China | Obesity | Non-medicated | 172/180 | 98/108 | 74/72 | 5.0 ± 0.9 | Overweight:17.4 ± 0.6 Obese: 20.3 ± 2.2 Healthy controls: 15.1 ± 1.06 | Without chronic or acute illness or major abnormalities | No |
Prats-Puig et al., 2013 [10] | Spain | Obesity | Non-medicated | 61/64 | 18/22 | 43/42 | 9.5 ± 1.3 | Obese: 3.36 ± 0.43 Lean: −0.62 ± 0.30 | No pubertal development, stable weight for height, without chronic or acute illness or major abnormalities | Age |
Preadolescents and adolescents | ||||||||||
Krause et al., 2015 [19] | Chile | Metabolic Syndrome | Not informed | 66/92 * | 128 * | 30 * | 11.6 ± 0.9 | All sample: 24.6 ± 4.0 | Control group without metabolic syndrome traits | No |
Iacomino et al., 2019 [14] | Eight European countries # | Obesity | Not informed | 86/103 | 41/53 | 45/50 | 12.2 ± 1.7 | Overweight/obese: 1.75 ± 0.61 NW: −0.04 ± 0.50 | Unclear on the presence of diseases and use of medications | Gender, age and country |
Al-Rawaf, 2018 [13] | Egypt | Obesity | Non-medicated | 150/100 | 122/78 | 28/22 | 13.9 ± 2.9 | Overweight: 21.9 ± 5.7 Obese: 26.7 ± 8.2 NW: 17.4 ± 4.3 | Without chronic or acute illness or major abnormalities | Age |
Adults and older adults | ||||||||||
Wang et al., 2015 [31] | China | Obesity | Not informed | 112/118 | 62/61 | 50/57 | 24.0 ± 2.7 | Obese: 37.73 ± 4.40 NW: 20.79 ± 1.41 | Without chronic or acute illness or major abnormalities | Age, gender, HDL-c and alanine aminotransferase |
Hijmans et al., 2018 [30] | USA | Obesity | Non-medicated | 23/22 | 15/15 | 8/7 | 55.0 ± 1.4 | Normal weight: 23.3 ± 1.2 Overweight: 28.2 ± 1.2 Obese: 32.3 ± 1.9 | Sedentary, non-hypertensive, non-smokers, normolipidemic, without chronic or acute illness or major abnormalities | No |
Wang et al., 2013 [9] | Taiwan | Metabolic syndrome | Non-medicated for hyperglycemia or hyperlipidemia | 52/50 | 16/15 | 36/35 | 55.8 ± 8.0 | With MetS: 26.6 ± 3.6 Without MetS: 24.1 ± 3.3 | Without chronic or acute illness or major abnormalities | Age, gender and smoking |
Zaki et al., 2019 [20] | Egypt | Metabolic Syndrome | Not informed | 75/0 | 55/0 | 20/0 | 18–50 | Not informed | Without chronic or acute illness or major abnormalities | No |
Zhou et al., 2018 [29] | China | ↓ HDL-c | Non-medicated | 90/84 | 45/43 | 45/41 | <55 | Not informed | Without obesity, metabolic syndrome, chronic or acute illness or major abnormalities | Gender |
Simionescu et al., 2014 [34] | Romania | Dyslipidemia Hyperglycemia | Not informed | 10/15 | 8/12 | 2/3 | 56.2 ± 12.3 | Not informed | Groups: hyperlipidemic, hyperglycemic, hyperlipidemic/hyperglycemic and control (normolipidemic/ normoglycemic) | No |
Badawy; Abo-Elmatty; Mesbah, 2018 [22] | Egypt | Hypertension | Anti-hypertensive medication | 24/26 | 13/12 | 11/14 | 50.2 ± 11.0 | Hypertensive: 26.7 ± 3.7 Normotensive: 27.5 ± 4.13 | Included smoking | No |
Hijmans et al., 2018 [21] | USA | Hypertension | Non-medicated | 20/10 | 10/5 | 10/5 | 57.5 ± 1.6 | Hypertensive: 25.8 ± 2.7 Normotensive: 25.2 ± 2.7 | Sedentary, non-hypertensive, non-smokers, normolipidemic, without chronic or acute illness or major abnormalities | No |
Rong et al., 2013 [33] | China | T2D | Non-medicated | 94/86 | 47/43 | 47/43 | 48.3 ± 10.3 | New-T2D: 24.58 ± 3.66 NGT: 23.38 ± 2.95 | BMI < 40 and without chronic or acute illness or major abnormalities | Age, gender, BMI, smoking, alcohol drinking, history of hypertension, family history of diabetes, and specific biochemical indicators |
Ortega et al., 2014 [25] | Spain | T2D Obesity | Not informed | 93/0 | 58/0 | 35/0 | 52.1 ± 10.2 | NGT/NW: 25.2 ± 1.8 T2D/NW: 26.4 ± 2.4 NGT/obese: 32.2 ± 2.4 T2D/obese: 33.4 ± 3.3 | Stable metabolic control | Age, BMI |
Higuchi et al., 2015 [32] | Japan | T2D | Metformin, insulin, α-glucosidase inhibitors, sulfonylureas, pioglitazone, glinides and DPP-4 inhibitors | 121/83 | 96/59 | 25/24 | 58.4 ± 14.2 | T2D: 25.9 ± 4.97 NGT: 23.6 ± 4.05 | Without renal dysfunctions | Age, HbA1c, postprandial glucose, BMI, TG, HDL-c and glomerular filtration rate |
Prabu et al., 2015 [38] | India | T2D | Non-medicated | 74/71 | 48/48 | 26/23 | 44.3 ± 7.4 | IGT: 24.9 ± 2.9 T2D: 25.7 ± 3.5 NGT: 24.5 ± 2.6 | Newly diagnosed T2D | Gender |
Lopez; Garufi; Seyhan, 2016 [36] | USA | Obesity T2D | Only one of them: metformin, sulfonylureas, Glucagon-like peptide-1 analogs and/or Dipeptidyl peptidase IV inhibitors | 26/32 | 21/17 | 5/15 | 45.2 ± 29.5 | Control/lean: 22.5 ± 3.7 Pre-T2D/lean: 21.6 ± 4.5 T2D/lean: 23.1 ± 0.6 Control/obese: 31.9 ± 8.3 Pre-T2D/obese: T2D/obese: 41.5 ± 21.1 | Without chronic or acute illness, major abnormalities or drugs/alcohol use | BMI, age and gender |
Candia et al., 2017 [37] | Italy | T2D | Non-medicated | 11/16 | 7/11 | 4/5 | 60.3 ± 8.1 | NGT: 23.7 ± 3.3 IGT: 25.6 ± 3.3 T2D: 29.6 ± 7.8 | Newly diagnosed T2D | No |
Ghorbani et al., 2018 [39] and Mahdavi et al., 2018 € [16] | Iran | T2D Obesity | Metformin, statins, antihypertensive | 39/50 | 26/21 | 13/29 | 52.2 ± 7.1 | T2D: 28.2 ± 4.8 NGT: 27.3 ± 3.9 | Without chronic or acute illness or major abnormalities | BMI, age and gender |
Sucharita et al., 2018 [17] | India | T2D | Oral hypoglycemic agents | 42/18 | 21/9 | 21/9 | 46.3 ± 7.1 | T2D: 27.3 ± 4.6 NGT: 27.3 ± 4.7 | Duration of disease < 5 years, without chronic or acute illness or major abnormalities | Age |
Williams et al., 2019 [18] | USA | Obesity T2D | Not informed | 0/67 | 0/44 | 0/23 | 61.3 ± 1.1 | NGT: 30.5 ± 6.2 T2D: 38.1 ± 8.4 | Insufficient information | No |
Corona-Meraz et al., 2019 [35] | Mexico | Insulin resistance | Non-medicated | 24/56 | 25 ** | 55 ** | 20–59 | Non-IR young: 26.2 ± 5.7 Non-IR senior: 28.0 ± 4.5 IR young: 33.9 ± 7.1 IR senior: 31.1 ± 6.5 | Without chronic or acute illness or major abnormalities | No |
Author/Year | Disease | Sample | Normalization | Regulation |
---|---|---|---|---|
Children | ||||
Cui et al., 2018 & [12] | Obesity | Serum | 2−ΔΔCt method, using syn-cel-miR-39 as reference | ↑ miR-222, miR-486, miR-146b, miR-146a, miR-20a, miR-15b, miR-26b ↓ miR-197 |
Prats-Puig et al., 2013 [10] | Obesity | Plasma | ΔCt method, using miR-106a, miR-146a, miR-19b, and miR-223 as reference | ↑ miR-486-5p, miR-486-3p, miR-142-3p, miR-130b, miR-423-5p, miR-532-5p, miR-140-5p, miR-16-1, miR-222, miR-363, miR-122 ↓ miR-221, miR-28-3p, miR-125b, miR-328 ↔ miR-195 |
Preadolescents and adolescents | ||||
Krause et al., 2015 [19] | Metabolic syndrome | Plasma | 2−ΔΔCt method, using syn-cel-miR-39 as reference | ↑ miR-let-7e ↔ miR-126, miR-132, miR-145 |
Al-Rawaf, 2018 [13] | Obesity | Plasma | 2−ΔCt method, using cel-RNU43 as endogenous reference | ↑ miR-142-3p, miR-140-5p, miR-222, miR-143, miR-130b ↓ miR-532-5p, miR-423-5p, miR-520c-3p, miR-146a, miR-15a |
Iacomino et al., 2019 [14] | Obesity | Plasma | Geometric mean, using spike-in-Cel-miR-39 and SNORD95 as reference | ↑ miR-501-5p, miR-551a ↓ miR-10b-5p, miR-191-3p, miR-215-5p, miR-874-3p |
Adults and older adults | ||||
Wang et al., 2015 [31] | Obesity | Serum | Quantile algorithm (Gene Spring Software 11.0—Agent Technologies), using SYBR green as reference | ↑ miR-122 |
Hijmans et al., 2018b [30] | Obesity | Plasma | ΔCt method, using cel-miR-39 as reference | ↓ miR-126, miR-146a, miR-150 ↑ miR-34a ↔ miR-181b |
Wang et al., 2013 [9] | Metabolic syndrome | Serum | Median normalization method, using syn-cel-lin-4 as reference | ↑ miR-let-7g, miR-221 |
Zaki et al., 2019 [20] | Metabolic Syndrome | Serum | 2−ΔΔCt method, using SNORD68 as reference | ↑ miR-486-5p, miR-497, miR-509-5p, miR-605 |
Simionescu et al., 2014 [34] | Dyslipidemia Hyperglycemia | Serum | 2−ΔCt method, using cel-miR-39 as reference | ↑ miR-125a-5p, miR-146a, miR-10a, miR-21, miR-33a |
Zhou et al., 2018 [29] | ↓ HDL-c | Plasma | 2−ΔCt method, using miR-191-5p as reference | ↑ miR-222-3p ↓ miR-221-3p |
Badawy;Abo-Elmatty; Mesbah, 2018 [22] | Hypertension | Serum | 2−ΔΔCt method, using miR U6 as reference | ↑ miR-605, miR-623 |
Hijmans et al., 2018 [21] | Hypertension | Plasma | ΔCt method, using cel-miR-39 as reference | ↓ miR-21, miR-126, miR-146a ↑ miR-34a ↔ miR-17, miR-92a, miR-145, miR-150 |
Rong et al., 2013 [33] | T2D | Plasma | 2−ΔΔCt method, using miR-16 as reference | ↑ miR-146a |
Ortega et al., 2014 [25] | T2D Obesity | Plasma | Geometric mean method, using miR-106a, miR-146a, miR-19b, and miR-223 as reference | ↑ miR-140-5p, miR-142-3p, miR-222 ↓ miR-423-5p, miR-125b, miR-192, miR-195, miR-130b, miR-532-5p, miR-126 |
Higuchi et al., 2015 [32] | T2D | Serum | Log 10 transformation, using C. elegans spiked-in control miRNA and cel-miR-39 as reference | ↑ miR-101, miR-375, miR-802 ↔ miR-335 |
Prabu et al., 2015 [38] | T2D | Serum | 2−ΔCt method, using RNA spike-in control (Sp6) as reference | ↑ miR-128, miR-130b-3p, miR-374a-5p, miR-99b ↓ miR-423-5p ↔ miR-629a-5p, let-7d-3p, miR-142-3p, miR-484 |
Lopez; Garufi; Seyhan, 2016 [36] | ObesityT2D | Plasma | −ΔΔCt method, using cel-miR39, miR-191, miR-423-3p, and miR-451 as reference | ↑ miR-21, miR-24.1, miR-27a, miR-34a, miR-146a, miR-148a, miR-223, miR-326, miR-152 ↓ miR-29b, miR-126, miR-155, miR-25, miR-93, miR-150 |
Candia et al., 2017 [37] | T2D | Plasma | 2(average Ct-assay Ct) and log transformed, using UniSp2, UniSp4, UniSp5, and UniSp6 as reference | ↑ miR-122, miR-148, miR-99 ↓ miR-18a, miR-18b, miR-23a, miR-24, miR-27a, miR-28, miR-30d, miR-222, miR-let-7d ↔ miR-126-3p |
Ghorbani et al., 2018 [39] and Mahdavi et al., 2018 € [16] | T2D Obesity | Serum | 2−ΔCt method, using miR-39 and miR-16 as reference | ↓ miR-21, miR-155 ↔ miR-126, miR-146a |
Sucharita et al., 2018 [17] | T2D | Plasma | ΔCt method, using miR-16 as reference | ↑ miR-30d ↔ miR-9, miR-1, miR-133a, miR-29a, miR-143 |
Corona-Meraz et al., 2019 [35] | Insulin resistance | Serum | 2−ΔCt method, using hsa-miR-320a as reference | ↑ miR-33a, miR-33b |
Williams et al., 2019 [18] | Obesity T2D | Serum | ΔCt method, using cel-hsa-miR-221-3p as reference | ↓ miR-17 |
MicroRNA | Body Fluids | Characteristics of the Sample | Glycemic Variables | Lipid Variables | Inflammatory Variables | Anthropometric Variables | References |
---|---|---|---|---|---|---|---|
miR-21 * | Serum | T2D and obesity Adults and elderly | Insulin (−) HOMA-IR (−) | TC (−) HDL-c (+) | No correlations | BMI (−) WC (−) | [16,39] |
Serum | Dyslipidemia and hyperglycemia Young, adult and elderly | No correlations | TC (+) TG (+) LDL-c (+) | CRP (+) IL-1ꞵ (+) | Not evaluated | [34] | |
Plasma | T2D and obesity Adults and elderly | Glucose (+) HbA1c (+) | No correlations | IL-6 (+) | No correlations | [36] | |
Plasma | Hypertension Adults and elderly | No correlations | No correlations | Not evaluated | SBP (−) | [21] | |
miR-28 | Plasma | Newly diagnosed T2D Adults and elderly | No correlations | TC (+) LDL-c (−) | Not evaluated | No correlations | [37] |
Plasma | Obesity Children | No correlations | No correlations | CRP (−) Adiponectin (+) | BMI (−) WC (−) BP (−) | [10] | |
miR-122 * | Plasma | Obesity Children | No correlations | No correlations | Adiponectin (−) | BMI (+) SBP (+) | [10] |
Serum | Obesity Young | FBG (+) Insulin (+) HOMA-IR (+) | TG (+) HDL-c (−) | Not evaluated | BMI (+) BP (+) | [31] | |
miR-126 | Plasma | Obesity Adults and elderly | No correlations | No correlations | Not evaluated | BMI (−) | [30] |
Plasma | Hypertension Adults and elderly | No correlations | No correlations | Not evaluated | SBP (−) | [21] | |
Plasma | Metabolic syndrome Children | No correlations | TG (+) VLDL-c (+) | No correlations | WC (+) BMI (+) | [19] | |
Plasma | T2D and obesity Adults and elderly | FBG (−) HbA1c (−) | No correlations | Not evaluated | No correlations | [25] | |
miR-130b * | Plasma | T2D and obesity Adults and elderly | FBG (−) HbA1c (−) | TG (−) | Not evaluated | No correlations | [25] |
Plasma | Obesity Children | HOMA-IR (+) | HDL-c (−) | CRP (+) | BMI (+) WC (+) | [10] | |
Serum | Newly diagnosed T2D Adults | HbA1c (+) | No correlations | Not evaluated | No correlations | [38] | |
Plasma | Overweight and obesity Adolescents | FBG (+) Insulin (+) HOMA-IR (+) | TG (+) LDL-c (+) HDL-c (+) | Adiponectin (+) Leptin (+) | BMI (+) | [13] | |
miR-140 | Plasma | Overweight and obesity Adolescents | FBG (+) Insulin (+) HOMA-IR (+) | TG (+) LDL-c (+) HDL-c (+) | Adiponectin (+) Leptin (+) | BMI (+) | [13] |
Plasma | T2D and obesity Adults and elderly | FBG (+) HbA1c (+) | TG (+) | Not evaluated | No correlations | [25] | |
Plasma | Obesity Children | No correlations | No correlations | Adiponectin (−) | BMI (+) WC (+) BP (+) | [10] | |
miR-142 | Plasma | Overweight and obesity Adolescents | FBG (+) Insulin (+) HOMA-IR (+) | TG (+) LDL-c (+) HDL-c (+) | Adiponectin (+) Leptin (+) | BMI (+) | [13] |
Plasma | T2D and obesity Adults and elderly | FBG (+) HbA1c (+) | TG (+) | Not evaluated | No correlations | [25] | |
Plasma | Obesity Children | No correlations | No correlations | CRP (+) Adiponectin (−) | BMI (+) WC (+) BP (+) | [10] | |
miR-143 | Plasma | Overweight and obesity Adolescents | FBG (+) Insulin (+) HOMA-IR (+) | TG (+) LDL-c (+) HDL-c (+) | Adiponectin (+) Leptin (+) | BMI (+) | [13] |
miR-146a | Serum | Overweight and obesity Adults and elderly | No correlations | No correlations | Not evaluated | BMI (+) | [12] |
Plasma | Obesity Adults and elderly | No correlations | No correlations | Not evaluated | BMI (−) | [30] | |
Plasma | Arterial hypertension Adults and elderly | No correlations | No correlations | Not evaluated | BP (+) | [21] | |
Plasma | Overweight and obesity Adolescents | FBG (−) Insulin (−) HOMA-IR (−) | TG (+) HDL-c (+) LDL-c (+) | Adiponectin (+) Leptin (+) | BMI (−) | [13] | |
Plasma | T2D and obesity Adults | HOMA-B (−) | No correlations | Not evaluated | No correlations | [33] | |
Serum | Dyslipidemia and hyperglycemia Young, adult and elderly | No correlations | TG (+) TC (+) LDL-c (+) | CRP (+) IL-1ꞵ (+) | Not evaluated | [34] | |
miR-222 * | Plasma | Overweight and obesity Adolescents | FBG (+) Insulin (+) HOMA-IR (+) | TG (+) HDL-c (+) LDL-c (+) | Adiponectin (+) Leptin (+) | BMI (+) | [13] |
Serum | Overweight and obesity Adults and elderly | No correlations | No correlations | Not evaluated | BMI (+) | [12] | |
Plasma | T2D and obesity Adults and elderly | FBG (+) HbA1c (+) | No correlations | Not evaluated | No correlations | [25] | |
Plasma | Obesity Children | HOMA-IR (+) | TG (+) HDL-c (−) | CRP (+) | BMI (+) WC (+) | [10] | |
Plasma | Newly diagnosed T2D Adults and elderly | HbA1c (−) | No correlations | Not evaluated | No correlations | [37] | |
Plasma | Reduced HDL-c Adults | No correlations | HDL (−) | Not evaluated | No correlations | [29] | |
miR-423 | Plasma | Overweight and obesity Adolescents | FBG (−) Insulin (−) HOMA-IR (−) | TG (+) LDL-c (+) HDL-c (+) | Adiponectin (+) Leptin (+) | BMI (−) | [13] |
Plasma | T2D and obesity Adults and elderly | FBG (−) HbA1c (−) | TG (−) | Not evaluated | No correlations | [25] | |
Serum | Newly diagnosed T2D Adults | No correlations | HDL-c (−) | Not evaluated | No correlations | [38] | |
Plasma | Obesity Children | HOMA-IR (+) | TG (+) | No correlations | BMI (+) WC (+) | [10] | |
miR-486 * | Serum | Overweight and obesity Adults and elderly | No correlations | No correlations | Not evaluated | BMI (+) | [12] |
Plasma | Obesity Children | HOMA-IR (+) | TG (+) HDL-c (−) | CRP (+) Adiponectin (−) | BMI (+) WC (+) BP (+) | [10] | |
Serum | Metabolic syndrome Adults | FBG (+) | TG (+) | Not evaluated | BP (−) | [20] | |
miR-532 | Plasma | Overweight and obesity Adolescents | FBG (−) Insulin (−) HOMA-IR (−) | TG (+) LDL-c (+) HDL-c (+) | Adiponectin (+) Leptin (+) | BMI (−) | [13] |
Plasma | T2D and obesity Adults and elderly | FBG (−) HbA1c (−) | TG (−) | Not evaluated | No correlations | [25] | |
Plasma | Obesity Children | HOMA-IR (+) | TG (+) | CRP (+) | BMI (+) WC (+) BP (+) | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandão-Lima, P.N.; de Carvalho, G.B.; Payolla, T.B.; Sarti, F.M.; Rogero, M.M. Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review. Metabolites 2022, 12, 1044. https://doi.org/10.3390/metabo12111044
Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM, Rogero MM. Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review. Metabolites. 2022; 12(11):1044. https://doi.org/10.3390/metabo12111044
Chicago/Turabian StyleBrandão-Lima, Paula N., Gabrielli B. de Carvalho, Tanyara B. Payolla, Flavia M. Sarti, and Marcelo M. Rogero. 2022. "Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review" Metabolites 12, no. 11: 1044. https://doi.org/10.3390/metabo12111044
APA StyleBrandão-Lima, P. N., de Carvalho, G. B., Payolla, T. B., Sarti, F. M., & Rogero, M. M. (2022). Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review. Metabolites, 12(11), 1044. https://doi.org/10.3390/metabo12111044