Identification of Candidate Salivary, Urinary and Serum Metabolic Biomarkers for High Litter Size Potential in Sows (Sus scrofa)
Abstract
:1. Introduction
2. Methods
2.1. Animals and Housing
2.2. Biofluid Collection
2.3. Metabolomic Analysis
2.4. Data Pre-Processing and Statistical Analysis
2.5. Variable Selection and Potential Biomarker Identification
3. Results
3.1. HRP and INF Sows Have Diverging Metabolic Profiles in Saliva, Urine and Serum
3.2. Amino Acid, Fatty-Acid, Lipid and Steroid Hormone Metabolites Are Altered between HRP and INF Sows
3.3. Biomarker Selection and Model Performance
4. Discussion
4.1. Reduced Amino Acid Pool in INF Pigs
4.2. L-Carnitine and Acetyl-L-Carnitine Increased for Fatty Acid Oxidation and ROS Protection in HRP Pigs
4.3. Disrupted Membrane Lipid Metabolism in INF Pigs
4.4. Beneficial Levels of Steroid Hormones HRP Pigs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kridli, R.T.; Khalaj, K.; Bidarimath, M.; Tayade, C. Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology 2015, 85, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Konta, A.; Kimata, M.; Ishii, K.; Uemoto, Y.; Satoh, M. Estimation of genetic parameters for farrowing traits in purebred Landrace and Large White pigs. Anim. Sci. J. 2019, 90, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knol, E.F.; Nielsen, B.; Knap, P.W. Genomic selection in commercial pig breeding. Anim. Front. 2016, 6, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Lillehammer, M.; Meuwissen, T.H.E.; Sonesson, A.K. Genomic selection for maternal traits in pigs. J. Anim. Sci. 2011, 89, 3908–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrazik, H.; Sharma, R.; Mahfouz, R.; Agarwal, A. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 2009, 91, 589–596. [Google Scholar] [CrossRef]
- Popovac, M.; Radojković, D.; Petrović, M.; Mijatović, M.; Gogić, M.; Stanogević, D.; Stanišić, N. Heritability and connections of sow fertility traits. Biotechnol. Anim. Husb. 2012, 28, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Lukac, D.; Vidovic, V.; Vasiljevic, T.; Stankovic, O. Estimation of genetic parameters and breeding values for litter size in the first three parity of Landrace sows. Biotechnol. Anim. Husb. 2016, 32, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Holm, B.; Bakken, M.; Klemetsdal, G.; Vangen, O. Genetic correlations between reproduction and production traits in swine. J. Anim. Sci. 2004, 82, 3458–3464. [Google Scholar] [CrossRef]
- Koketsu, Y.; Duangkaew, C.; Dial, G.D.; Reeves, D. Within-farm variability in number of females mated per week during a one-year period and breeding herd productivity on swine farms. J. Am. Vet. Med. Assoc. 1999, 214, 520–524. [Google Scholar]
- Foxcroft, G.R.; Dixon, W.T.; Novak, S.; Putman, C.T.; Town, S.C.; Vinsky, M.D. The biological basis for prenatal programming of postnatal performance in pigs. J. Anim. Sci. 2006, 84, E105-12. [Google Scholar] [CrossRef]
- Freking, B.A.; Lents, C.A.; Vallet, J.L. Selection for uterine capacity improves lifetime productivity of sows. Anim. Reprod. Sci. 2016, 167, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Spenser, T.E.; Johnson, G.A.; Burghardt, R.C.; Wu, G. Comparative aspects of implantation. Reproduction 2009, 138, 195–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalbantoglu, S. Metabolomics: Basic Principles and Strategies. IntechOpen Mol. Med. 2019, 88563. [Google Scholar] [CrossRef] [Green Version]
- Bouatra, S.; Axiat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [Green Version]
- Parsons, H.M.; Ekman, D.R.; Collette, T.W.; Viant, M.R. Spectral relative standard deviation: A practical benchmark in metabolomics. Analyst 2009, 134, 478–485. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, F.; Qi, B.; Hao, S.; Li, Y.; Li, Y.; Zou, L.; Lu, C.; Xu, G.; Hou, L. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry. J. Proteome Res. 2014, 13, 1101–1111. [Google Scholar] [CrossRef]
- Omabe, M.; Elom, S.; Omabe, K.N. Emerging Metabolomics Biomarkers of Polycystic Ovarian Syndrome; Targeting the Master Metabolic Disrupters for Diagnosis and Treatment. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 221–229. [Google Scholar] [CrossRef]
- Atiomo, W.; Daykin, C. Metabolomic biomarkers in women with polycystic ovary syndrome: A pilot study. Mol. Hum. Reprod. 2012, 18, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Vonica, C.; Lie, I.; Socaciu, C.; Moraru, C.; Georgescu, B.; Farcaş, A.; Roman, G.; Mureşan, A.; Georgescu, C. Lipidomics biomarkers in women with polycystic ovary syndrome (PCOS) using ultra-high performance liquid chromatography–quadrupole time of flight electrospray in a positive ionization mode mass spectrometry. Scand. J. Clin. Lab. Investig. 2019, 79, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Buszewska-Forajta, M.; Rachoń, D.; Stefaniak, A.; Wawrzyniak, R.; Konieczna, A.; Kowalewska, A.; jan Markuszewski, M. Identification of the metabolic fingerprints in women with polycystic ovary syndrome using the multiplatform metabolomics technique. J. Steroid Biochem. Mol. Biol. 2019, 186, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Y.; Lalia, A.Z.; Jenkins, G.D.; Dutta, T.; Carter, R.E.; Singh, R.J.; Nair, K.S. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome. Metabolism 2017, 71, 52–63. [Google Scholar] [CrossRef]
- Sun, L.; Hu, W.; Liu, Q.; Hao, Q.; Sun, B.; Zhang, Q.; Mao, S.; Qiao, J.; Yan, X. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J. Proteome Res. 2012, 11, 2937. [Google Scholar] [CrossRef]
- Rajska, A.; Buszewska-Forajta, M.; Rachoń, D.; Markuszewski, M.J. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview. Int. J. Mol. Sci. 2020, 21, 4853. [Google Scholar] [CrossRef]
- Liu, P.; Duan, J.; Wang, P.; Qian, D.; Guo, J.; Shang, E.; Su, S.; Tang, Y.; Tang, Z. Biomarkers of primary dysmenorrhea and herbal formula intervention: An exploratory metabonomics study of blood plasma and urine. Mol. Biosys. 2013, 9, 77–87. [Google Scholar] [CrossRef]
- Singh, R.; Sinclair, K. Metabolomics: Approaches to assessing oocyte and embryo quality. Theriogenology 2007, 68S, S56–S62. [Google Scholar] [CrossRef]
- Tokarz, J.; Adamski, J.; Rižner, T. Metabolomics for diagnosis and prognosis of uterine diseases? A systematic review. J. Pers. Med. 2020, 10, 294. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, B.; Cai, S.; Zeng, X.; Ye, Q.; Mao, X.; Zhang, S.; Zeng, X.; Ye, C.; Qiao, S. Metabolic disorder of amino acids, fatty acids and purines reflects the decreases in oocyte quality and potential in sows. J. Proteom. 2019, 200, 134–143. [Google Scholar] [CrossRef]
- Bertoldo, M.J.; Nadal-Desbarats, L.; Gérard, N.; Dubois, A.; Holyoake, P.K.; Grupen, C.G. Differences in the metabolomic signatures of porcine follicular fluid collected from environments associated with good and poor oocyte quality. Reproduction 2013, 146, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Soede, N.M.; Langendijk, P.; Kemp, B. Reproductive cycles in pigs. Anim. Reprod. Sci. 2011, 124, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Ahktar, N.; Jafarikia, M.; Sullivan, B.P.; Li, J. An efficient method for saliva collection from mature pigs to determine their enzymatic and electrolytic profiles. J. Vet. Med. Sci. 2018, 80, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Nickel, M. Development and Validation of Ante-mortem Urine Collection Techniques for Gilts and Sows. In Proceedings of the 48th American Association of Swine Veterinarians’ Annual Meeting, Indianapolis, IN, USA, 26 February–1 March 2017; pp. 63–64. [Google Scholar]
- Dove, C.; Alworth, L. Blood collection from the orbital sinus of swine. Lab Animal 2015, 44, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; Morais, D.A.d.L.; Chan, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights, Nucleic Acids Research. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 2020, 143, 106839. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman., J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Liu, H.; Motoda., H. Computational Methods of Feature Selection; CRC Press: Boca Raton, FL, USA, 2007; p. 440. [Google Scholar]
- Akarachantachote, N.; Chadcham, S.; Saithanu, K. Cutoff Threshold of Vairable Importance in Projection for Variable Selection. Int. J. Pure Appl. Math. 2013, 94, 307–322. [Google Scholar] [CrossRef]
- Schipper, R.G.; Silletti, E.; Vingerhoeds, M.H. Saliva as research material: Biochemical, physicochemical and practical aspects. Arch. Oral Biol. 2007, 52, 1114–1135. [Google Scholar] [CrossRef]
- Haeckel, R. Factors Influencing the Saliva/Plasma Ratio of Drugs. Ann. N. Y. Acad. Sci. 1993, 694, 128–142. [Google Scholar] [CrossRef]
- Peeters, M.; Sulon, J.; Beckers, J.F.; Ledoux, D.; Vandenheede, M. Comparison between blood serum and salivary cortisol concentrations in horses using an adrenocorticotropic hormone challenge. Equine Vet. J. 2011, 43, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Hofman, L.F. Human saliva as a diagnostic specimen. J. Nutr. 2001, 131, 1621S–1625S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, J.L.; Vanholder, T.; Delanghe, J.R.; Opsomer, G.; Van Soom, A.; Bols, P.E.; de Kruif, A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim. Reprod. Sci. 2004, 80, 201–211. [Google Scholar] [CrossRef]
- Montjean, D.; Entezami, F.; Lichtblau, I.; Belloc, S.; Gurgan, T.; Menezo, Y. Carnitine content in the follicular fluid and expression of the enzymes involved in β oxidation in oocytes and cumulus cells. J. Assist. Reprod. Genet. 2012, 29, 1221–1225. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.E.; Gopichandran, N.; Picton, H.M.; Leese, H.J.; Orsi, N.M. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005, 64, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Hugentobler, S.A.; Diskin, M.G.; Leese, H.J.; Humpherson, P.G.; Watson, T.; Sreenan, J.M.; Morris, D.G. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 2007, 74, 445–454. [Google Scholar] [CrossRef]
- Sturmery, R.G.; Brison, D.R.; Leese, H.J. Assessing embryo viability by measurement of amino acid turnover. Reprod. BioMed. Online 2008, 17, 486–496. [Google Scholar] [CrossRef]
- Hemmings, K.; Maruthini, D.; Vyjayanthi, S.; Hogg, J.; Balen, A.; Campbell, B.; Leese, H.; Picton, H. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum. Reprod. 2013, 4, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Murgia, F.; Angioni, S.; D’Alterio, M.N.; Pirarba, S.; Noto, A.; Santoru, M.L.; Tronci, L.; Fanos, V.; Atzori, L.; Congiu, F. Metabolic Profile of Patients with Severe Endometriosis: A Prospective Experimental Study. Reprod. Sci. 2021, 28, 728–735. [Google Scholar] [CrossRef]
- Hong, L.; Zhu, Y.C.; Liu, S.; Wu, T.; Li, Y.; Ye, L.; Diao, L.; Zeng, Y. Multi-omics reveals a relationship between endometrial amino acid metabolism and autophagy in women with recurrent miscarriage. Biol. Reprod. 2021, 105, 393–402. [Google Scholar] [CrossRef]
- Steluti, J.; Palchetti, C.; Miranda, A.; Fisberg, R.; Marchioni, D. DNA methylation and one-carbon metabolism related nutrients and polymorphisms: Analysis after mandatory flour fortification with folic acid. Br. J. Nutr. 2020, 123, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Steegers-Theunissen, R.P.; Twigt, J.; Pestinger, V.; Sinclair, K.D. The periconceptional period, reproduction and long-term health of offspring: The importance of one-carbon metabolism. Hum. Reprod. Update 2013, 19, 640–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demond, H.; Kelsey, G. The enigma of DNA methylation in the mammalian oocyte. Fac. Rev. 2020, 25, F1000-1146. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Ali, M.M. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019, 11, 608. [Google Scholar] [CrossRef] [Green Version]
- Sibal, L.; Agarwal, S.C.; Home, P.D.; Boger, R.H. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr. Cardiol. Rev. 2010, 6, 82–90. [Google Scholar] [CrossRef]
- Kaufmann, P.; Black, S.; Huppertz, B. Endovascular trophoblast invasion: Implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol. Reprod. 2003, 69, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ayling, L.J.; Whitley, G.S.J.; Aplin, J.D.; Cartwright, J.E. Dimethylarginine dimethylaminohydrolase (DDAH) regulates trophoblast invasion and motility through effects on nitric oxide. Human Reprod. 2006, 21, 2530–2537. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.K.; McCormick, J.; Cartwright, J.E.; Whitley, G.S.J.; Dash, P.R. S-nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp. Cell Res. 2008, 314, 1765–1776. [Google Scholar] [CrossRef]
- Reuter, S.E.; Evans, A.M. Carnitine and Acylcarnitines. Clin. Pharmacokinet. 2012, 51, 553–572. [Google Scholar] [CrossRef]
- Khan, R.; Jiang, X.; Hameed, U.; Shi, Q. Role of Lipid Metabolism and Signalling in Mammalian Oocyte Maturation, Quality and Aquisition of Comptetence. Front. Cell Dev. Biol. 2021, 9, 639704. [Google Scholar] [CrossRef]
- Dunning, K.R.; Cashman, K.; Russell, D.L.; Thompson, J.G.; Norman, R.J.; Robker, R.L. Beta-Oxidation Is Essential for Mouse Oocyte Developmental Competence and Early Embryo Development. Biol. Reprod. 2010, 83, 909–918. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, T.G.; Coull, G.D.; Broadbent, P.J.; Hutchinson, J.S.M.; Speake, B.K. Fatty acid composition of lipids in immature cattle, pig and sheepoocytes with intact zona pellucida. J. Reprod. Fertil. 2000, 118, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Sturmey, R.G.; Leese, H.J. Energy metabolism in pig oocytes and early embryos. Reproduction 2003, 126, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, S. Application of In Vitro Maturation to Assisted Reproductive Technology. J Reprod. Dev. 2009, 55, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Somfai, T.; Kaneda, M.; Akagi, S.; Watanabe, S.; Haraguchi, S.; Mizutani, E.; Dang-Nguyen, T.; Geshi, M.; Kikuchi, K.; Nagai, T. Enhancement of lipid metabolism with l-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod. Fertil. Dev. 2011, 23, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Q.; Jia, B.Y.; Li, J.J.; Fu, X.W.; Zhou, G.B.; Hou, Y.P.; Zhu, S.E. L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology 2011, 76, 785–793. [Google Scholar] [CrossRef]
- You, J.; Lee, J.; Hyun, S.H.; Lee, E. L-carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione synthesis and embryonic gene expression. Theriogenology 2012, 78, 235–243. [Google Scholar] [CrossRef]
- Dunning, K.R.; Russell, D.L.; Robker, R.L. Lipids and oocyte developmental competence: The role of fatty acids and ß-oxidation. Reproduction 2014, 148, R15–R27. [Google Scholar] [CrossRef] [Green Version]
- Houten, S.M.; Wanders, R.J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 2010, 33, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Gupta, S.; Sikka, S. The Role of Free Radicals and Antioxidants in Female Infertility and Assisted Reproduction. Curr. Opin. Obstet. Gynecol. 2006, 18, 325–332. [Google Scholar] [CrossRef]
- Aiken, C.E.; Tarryadkins, J.L.; Penfold, N.C.; Dearden, L.; Ozanne, S.E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2016, 30, 158–1556. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Xiao, Y.; Chen, Y.; Wu, X.; Zhang, G.; Wang, Q.; Xie, C. Effects of catechins on litter size, reproductive performance and antioxidative status in gestating sows. Anim. Nutr. 2015, 1, 271–275. [Google Scholar] [CrossRef]
- De Carvalho, C.; Caramujo, M. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colacios, C.; Sabourdy, F.; Andrieu-Abadie, N.; Ségui, B.; Levade, T. Basics of Sphingolipid Metabolism and Signalling. Bioact. Sphingolipids Cancer Biol. Ther. 2015, 1–20. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Guo, X.; Memon, K.; Panhwar, F.; Wang, M.; Cao, Y.; Zhao, G. Sensing Cell Membrane Biophysical Properties for Detection of High Quality Human Oocytes. ACS Sensors 2019, 4, 192–199. [Google Scholar] [CrossRef]
- Shehadeh, A.; Bruck-Haimson, R.; Saidemberg, D.; Zacharia, A.; Herzberg, S.; Ben-Meir, A.; Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J. 2019, 33, 10291–10299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batushansky, A.; Zacharia, A.; Shehadeh, A.; Bruck-Haimson, R.; Saidemberg, D.; Kogan, N.M.; Thomas, M.C.; Herzberg, S.; Ben-Meir, A.; Moussaieff, A. A Shift in Glycerolipid Metabolism Defines the Follicular Fluid of IVF Patients with Unexplained Infertility. Biomolecules 2020, 10, 1135. [Google Scholar] [CrossRef]
- Liu, L.; Yin, T.L.; Chen, Y.; Li, Y.; Yin, L.; Ding, J.; Yang, J.; Feng, H.L. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J. Steroid. Biochem. Mol. Biol. 2019, 185, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Shan, T.; Wen, M.; Qian, Y.; Zeng, X.; Guo, Y.; Chao, Y. Detection of urine metabolites in polycystic ovary syndrome by UPLC triple-TOF-MS. Clin. Chim. Acta. 2018, 448, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.A.; Rodriguez Paris, V.; Aflatounian, A.; Handelsman, D.J. Androgens and ovarian function: Translation from basic discovery research to clinical impact. J. Endocrin. 2019, 242, R23–R50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickerson, E.H.; Cho, L.W.; Maguiness, S.D.; Killick, S.L.; Robinson, J.; Atkin, S.L. Insulin resistance and free androgen index correlate with the outcome of controlled ovarian hyperstimulation in non-PCOS women undergoing IVF. Hum. Reprod. 2010, 25, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, F.; Sun, J.; Yu, W.; Sun, Y. Basal serum testosterone levels correlate with ovarian response but do not predict pregnancy outcome in non-PCOS women undergoing IVF. J. Assist. Reprod. Genet. 2014, 31, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Li, Y.; Long, L.; Luo, C.; Mai, Q. Basal serum testosterone levels correlate with ovarian reserve and ovarian response in cycling women undergoing in vitro fertilization. Gynecol. Endocrinol. 2016, 32, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Shen, H.; Li, Y.; Zhang, C.; Wang, C.; Chen, X.; Liang, R.; Wei, L. Low testosterone levels in women with diminished ovarian reserve impair embryo implantation: A retrospective case-control studyrate. J. Assist. Reprod. Genet. 2014, 31, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cárdenas, H.; Pope, W.F. Administration of testosterone during the follicular phase increased the number of corpora lutea in gilts. J. Anim. Sci. 1994, 72, 2930–2935. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, H.; Herrick, J.R.; Pope, W. Increased ovulation rate in gilts treated with dihydrotestosterone. Reproduction 2002, 123, 527–533. [Google Scholar] [CrossRef]
- Findlay, J.K.; Liew, S.H.; Simpson, E.R.; Korach, K.S. Estrogen signaling in the regulation of female reproductive functions. Handb. Exp. Pharmacol. 2010, 198, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Kaczynski, P.; Bauersachs, S.; Baryla, M.; Goryszewska, E.; Muszak, J.; Grzegorzewski, W.J.; Waclawik, A. Estradiol-17β-Induced Changes in the Porcine Endometrial Transcriptome In Vivo. Int. J. Mol. Sci. 2020, 21, 890. [Google Scholar] [CrossRef] [Green Version]
- Poutanen, M.; Isomaa, V.; Peltoketo, H.; Vihko, R. Role of 17 beta-hydroxysteroid dehydrogenase type 1 in endocrine and intracrine estradiol biosynthesis. J. Steroid. Biochem. Mol. Biol. 1995, 55, 525–532. [Google Scholar] [CrossRef]
- Yang, J.-G.; Chen, W.-Y.; Li, P.S. Effects of Glucocorticoids on Maturation of Pig Oocytes and Their Subsequent Fertilizing Capacity In Vitro. Biol. Reprod. 1999, 60, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-Y.; Wang, J.-Z.; Li, J.-J.; Wei, D.-L.; Sui, H.-S.; Zhang, Z.-H.; Zhou, P.; Tan, J.-H. Maternal restraint stress diminishes the developmental potential of oocytes. Biol. Reprod. 2011, 84, 672–681. [Google Scholar] [CrossRef]
- Yuan, H.; Han, X.; He, N.; Wang, G.-L.; Gong, S.; Lin, J.; Gao, M.; Tan, J.-H. Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system. Sci. Rep. 2016, 6, 24036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.Y. Effect of glucocorticoids on spontaneous and follicle-stimulating hormone-induced oocyte maturation in mouse oocytes during culture. J. Steroid. Biochem. Mol. Biol. 2003, 85, 423–427. [Google Scholar] [CrossRef]
- Gonzalez, R.; Ruiz-Leon, Y.; Gomendio, M.; Roldan, E.R. The effect of glucocorticoids on mouse oocyte in vitro maturation and subsequent fertilization and embryo development. Toxicol. Vitro 2010, 24, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.I.; Hemsworth, P.H.; Tilbrook, A.J. Susceptibility of reproduction in female pigs to impairment by stress or elevation of cortisol. Domest. Anim. Endocrinol. 2005, 29, 398–410. [Google Scholar] [CrossRef]
- Fateh, M.; Ben-Rafall, Z.; Benadiva, C.A.; Mastroianni, L.; Flickinger, G.L. Cortisol levels in human follicular fluid. Fertil. Steril. 1989, 51, 528–541. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fletcher, L.; Akhtar, N.; Zhan, X.; Jafarikia, M.; Sullivan, B.P.; Huber, L.-A.; Li, J. Identification of Candidate Salivary, Urinary and Serum Metabolic Biomarkers for High Litter Size Potential in Sows (Sus scrofa). Metabolites 2022, 12, 1045. https://doi.org/10.3390/metabo12111045
Fletcher L, Akhtar N, Zhan X, Jafarikia M, Sullivan BP, Huber L-A, Li J. Identification of Candidate Salivary, Urinary and Serum Metabolic Biomarkers for High Litter Size Potential in Sows (Sus scrofa). Metabolites. 2022; 12(11):1045. https://doi.org/10.3390/metabo12111045
Chicago/Turabian StyleFletcher, Lauren, Nadeem Akhtar, Xiaoshu Zhan, Mohsen Jafarikia, Brian P. Sullivan, Lee-Anne Huber, and Julang Li. 2022. "Identification of Candidate Salivary, Urinary and Serum Metabolic Biomarkers for High Litter Size Potential in Sows (Sus scrofa)" Metabolites 12, no. 11: 1045. https://doi.org/10.3390/metabo12111045
APA StyleFletcher, L., Akhtar, N., Zhan, X., Jafarikia, M., Sullivan, B. P., Huber, L. -A., & Li, J. (2022). Identification of Candidate Salivary, Urinary and Serum Metabolic Biomarkers for High Litter Size Potential in Sows (Sus scrofa). Metabolites, 12(11), 1045. https://doi.org/10.3390/metabo12111045