Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Effects of Hemodialysis on Individual LCFAs in Plasma
2.3. Effects of Hemodialysis on Individual LCFAs in RBCs
3. Discussion
4. Materials and Methods
4.1. Participants of the Study
4.2. Assessment
4.3. Plasma and RBC Membrane LCFAs Profile Analysis
4.4. Plasma and RBC Membrane LCFAs Cluster
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.C.; Bragg-Gresham, J.; Balkrishnan, R.; Dietrich, X.; Eckard, A.; Eggers, P.W.; Gaipov, A. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2019, 73, A7–A8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdrojewski, Ł.; Zdrojewski, T.; Rutkowski, M.; Bandosz, P.; Król, E.; Wyrzykowski, B.; Rutkowski, B. Prevalence of chronic kidney disease in a representative sample of the Polish population: Results of the NATPOL 2011 survey. Nephrol. Dial. Transplant. 2016, 31, 433–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.; Bhave, N.; Bragg-Gresham, J.; Balkrishnan, R.; Dietrich, X.; Eckard, A.; Eggers, P.W.; et al. US renal data system 2016 annual data report: Epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 2017, 69, A7–A8. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Block, G.; Humphreys, M.H.; Kopple, J.D. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003, 63, 793–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvinkel, P.; Carrero, J.J.; Axelsson, J.; Lindholm, B.; Heimbürger, O.; Massy, Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: How do new pieces fit into the uremic puzzle? Clin. J. Am. Soc. Nephrol. 2008, 3, 505–521. [Google Scholar] [CrossRef] [Green Version]
- Jump, D.B.; Tripathy, S.; Depner, C.M. Fatty acid-regulated transcription factors in the liver. Annu. Rev. Nutr. 2013, 33, 249–269. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Leung, J.C.K.; Chan, L.Y.Y.; Yiu, W.H.; Tang, S.C.W. A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog. Lipid Res. 2020, 77, 101020. [Google Scholar] [CrossRef]
- Alexander, D.D.; Miller, P.E.; Van Elswyk, M.E.; Kuratko, C.N.; Bylsma, L.C. A Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies of Eicosapentaenoic and Docosahexaenoic Long-Chain Omega-3 Fatty Acids and Coronary Heart Disease Risk. Mayo Clin. Proc. 2017, 92, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; Summerbell, C.D.; Worthington, H.V.; Song, F.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2020, 3, Cd003177. [Google Scholar] [CrossRef]
- Khor, B.H.; Narayanan, S.S.; Chinna, K.; Gafor, A.H.A.; Daud, Z.A.M.; Khosla, P.; Sundram, K.; Karupaiah, T. Blood Fatty Acid Status and Clinical Outcomes in Dialysis Patients: A Systematic Review. Nutrients 2018, 10, 1353. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, T.; Miller, M. A Fishy Topic: VITAL, REDUCE-IT, STRENGTH, and Beyond: Putting Omega-3 Fatty Acids into Practice in 2021. Curr. Cardiol. Rep. 2021, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- Majithia, A.; Bhatt, D.L.; Friedman, A.N.; Miller, M.; Steg, P.G.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Juliano, R.A.; Jiao, L.; et al. Benefits of Icosapent Ethyl Across the Range of Kidney Function in Patients with Established Cardiovascular Disease or Diabetes: REDUCE-IT RENAL. Circulation 2021, 144, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Dessì, M.; Noce, A.; Bertucci, P.; Noce, G.; Rizza, S.; De Stefano, A.; di Villahermosa, S.M.; Bernardini, S.; De Lorenzo, A.; Di Daniele, N. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients. Lipids Health Dis. 2014, 13, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, T.C.; Miyazaki-Anzai, S.; Masuda, M.; Levi, M.; Demer, L.L.; Tintut, Y.; Miyazaki, M. Increased lipogenesis and stearate accelerate vascular calcification in calcifying vascular cells. J. Biol. Chem. 2011, 286, 23938–23949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skeaff, C.M.; Hodson, L.; McKenzie, J.E. Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. J. Nutr. 2006, 136, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, R.M.; Galli, C.; Ferro-Luzzi, A.; Iacono, J.M. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: A study of normal subjects from Italy, Finland, and the USA. Am. J. Clin. Nutr. 1987, 45, 443–455. [Google Scholar] [CrossRef]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Cendali, F.; Fu, X.; Gamboni, F.; Morrison, E.J.; Beirne, J.; Nemkov, T.; Antonelou, M.H.; Kriebardis, A.; Welsby, I.; et al. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021, 61, 1867–1883. [Google Scholar] [CrossRef]
- Gollasch, B.; Dogan, I.; Rothe, M.; Gollasch, M.; Luft, F.C. Effects of hemodialysis on blood fatty acids. Physiol. Rep. 2020, 8, e14332. [Google Scholar] [CrossRef] [Green Version]
- Agroyannis, B.; Tzanatos, H.; Fourtounas, C.; Kopelias, I.; Katsoudas, S.; Chondros, K. Arteriovenous difference of blood ammonia in uremic patients under hemodialysis. Artif. Organs 1998, 22, 703–705. [Google Scholar] [CrossRef]
- Glassberg, B.Y. The arteriovenous difference on blood sugar content. Arch. Intern. Med. 1930, 46, 605–609. [Google Scholar] [CrossRef]
- Konttinen, A.; Sarajas, H.; Frick, M.; Rajasalmi, M. (Eds.) Arteriovenous relationship of non-esterified fatty acids, triglycerides, cholesterol and phospholipids in exercise. Ann. Med. Exp. Biol. Fenn. 1962, 40, 250–256. [Google Scholar] [PubMed]
- Ishibashi, T.; Nishizawa, N.; Nomura, M.; Liu, S.; Yang, M.; Miwa, T.; Shinkawa, I.; Yoshida, J.; Kawada, T.; Nishio, M. Arteriovenous differences in NO2-kinetics in anesthetized rabbits. Biol. Pharm. Bull. 2009, 32, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Kris-Etherton, P.M.; Harris, K.A. Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Curr. Atheroscler. Rep. 2008, 10, 503–509. [Google Scholar] [CrossRef]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N., Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef] [PubMed]
- Fenton, J.I.; Gurzell, E.A.; Davidson, E.A.; Harris, W.S. Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot. Essent. Fat. Acids 2016, 112, 12–23. [Google Scholar] [CrossRef]
- Ma, J.; Folsom, A.R.; Shahar, E.; Eckfeldt, J.H. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am. J. Clin. Nutr. 1995, 62, 564–571. [Google Scholar] [CrossRef]
- Ratnayake, W.M.; Sarwar, G.; Laffey, P. Influence of dietary protein and fat on serum lipids and metabolism of essential fatty acids in rats. Br. J. Nutr. 1997, 78, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Kuwamura, Y.; Shoji, T.; Okute, Y.; Yamazaki, Y.; Motoyama, K.; Morioka, T.; Mori, K.; Fukumoto, S.; Tsujimoto, Y.; Shioi, A.; et al. Altered Serum n-6 Polyunsaturated Fatty Acid Profile and Risks of Mortality and Cardiovascular Events in a Cohort of Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.S.; Baek, S.H.; Kim, J.Y.; Lee, J.H.; Kim, O.Y. Serum phospholipid monounsaturated fatty acid composition and Δ-9-desaturase activity are associated with early alteration of fasting glycemic status. Nutr. Res. 2014, 34, 733–741. [Google Scholar] [CrossRef]
- Jo, S.; An, W.S.; Park, Y. Erythrocyte n-3 polyunsaturated fatty acids and the risk of type 2 diabetes in Koreans: A case-control study. Ann. Nutr. Metab. 2013, 63, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Gollasch, B.; Wu, G.; Dogan, I.; Rothe, M.; Gollasch, M.; Luft, F.C. Maximal exercise and erythrocyte epoxy fatty acids: A lipidomics study. Physiol. Rep. 2019, 7, e14275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, T.R.; Hammock, B.D. Soluble epoxide hydrolase: Gene structure, expression and deletion. Gene 2013, 526, 61–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, A.; Halinski, L.P.; Sledzinski, T.; Malgorzewicz, S.; Woloszyk, P.; Dardzinska, J.; Debska-Slizien, A.; Chmielewski, M. Analysis of Serum Fatty Acids Profile in Kidney Transplant Recipients. Nutrients 2021, 13, 805. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczynski, A.; Ogluszka, M.; Nawrocka, A.; Polawska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.; Czarnik, U.; Pierzchała, M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009, 50, 1827–1838. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.M.; MacLaughlin, H.L.; Hall, W.L. Heart Rate Variability and Long Chain n-3 Polyunsaturated Fatty Acids in Chronic Kidney Disease Patients on Haemodialysis: A Cross-Sectional Pilot Study. Nutrients 2021, 13, 2453. [Google Scholar] [CrossRef]
- Ranea-Robles, P.; Chen, H.; Stauffer, B.; Yu, C.; Bhattacharya, D.; Friedman, S.L.; Puchowicz, M.; Houten, S.M. The peroxisomal transporter ABCD3 plays a major role in hepatic dicarboxylic fatty acid metabolism and lipid homeostasis. J. Inherit. Metab. Dis. 2021, 44, 1419–1433. [Google Scholar] [CrossRef]
Patients | |
---|---|
Age (years) | 72 ± 12 |
Sex | |
Male (n) | 9 |
Female (n) | 3 |
Body mass index (kg/m2) | 27 ± 3.3 |
Race (n) | Caucasian = 12 |
Cause of end-stage renal disease (ESRD) | |
Focal segmental glomerulosclerosis (n) | 6 |
IgA nephropathy (n) | 1 |
Renal amyloidosis | 1 |
Hypertension (n) | 1 |
Drug induced (n) | 1 |
ADPKD (n) | 1 |
Cystic kidneys (n) | 1 |
Complications | |
Cardiovascular or Cerebrovascular (n) | 12 |
Fatty Acids | Chain | Pre-HD Median (IQR) | Post-HD Median (IQR) | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre-HD Arterial | Pre-HD Venous | p Value, t Test (# Paired Wilcoxon test) | Pre-HD A–V Difference | Post-HD Arterial | Post-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | Post-HD A–V Difference | ||
Total-Plasma (μg/mL) | |||||||||
Myristic Acid | C14:0 | 52.596 (34.455–74.978) | 49.148 (35.486–61.274) | 0.201 | 1.999 (−0.948–5.168) | 69.936 (43.668–82.384) | 55.294 (37.346–73.459) | 0.05# | 4.706 (2.599–11.296) |
Myristolein acid | C14:1 n-5 | 3.234 (0.947–4.226) | 3.043 (1.223–3.605) | 0.328 | 0.054 (−0.289–0.518) | 3.301 (1.639–5.112) | 2.405 (1.255–4.273) | 0.071# | 0.114 (0.001–0.612) |
Palmitic acid | C16:0 | 777.653 (573.133–955.245) | 641.312 (546.790–1041.449) | 0.259 | 38.589 (−7.998–83.389) | 866.837 (608.336–1058.773) | 757.319 (533.635–969.393) | 0.081 | 81.436 (43.274–128.276) |
Palmitoleic acid | C16:1 n-7 | 73.498 (49.472–95.766) | 63.583 (50.81–93.068) | 0.523 | 1.055 (−1.338–6.058) | 66.312 (49.748–88.141) | 56.138 (46.339–83.299) | 0.16 | 5.162 (1.216–8.782) |
Stearic acid | C18:0 | 127.090 (101.163–181.126) | 133.632 (97.466–184.07) | 0.92 | 6.2596 (−15.557–17.815) | 153.798 (103.222–186.498) | 127.594 (114.844–164.167) | 0.222 | 11.989 (−6.372–44.691) |
Oleic acid | C18:1 n-9 | 748.353 (613.3662–902.8834) | 691.807 (586.015–991.742) | 0.377 | 19.965 (−18.542–74.232) | 825.9256 (638.758–986.897) | 739.047 (587.658–929.974) | 0.068 | 62.843 (38.444–85.592) |
Linoleic acid | C18:2 n-6 | 562.592 (518.182–711.229) | 581.052 (497.470–671.192) | 0.397 | 9.3694 (−33.449–47.94) | 630.349 (521.263–696.79) | 590.649 (472.954–621.414) | 0.05# | 57.752 (24.256–71.841) |
α-Linoleic acid | C18:3 n-3 alpha | 13.945 (10.154–26.515) | 15.015 (10.567–27.396) | 0.719 | −0.893 (−1.754–0.365) | 20.302 (13.724–27.295) | 16.611 (13.909–26.029) | 0.347# | 1.159 (−0.614–2.801) |
γ-Linoleic acid | C18:3 n-6 gamma | 8.567 (6.489–14.347) | 9.140 (6.723–14.17) | 0.54 | 0.788 (−0.981–1.764) | 13.178 (6.819–14.602) | 8.862 (6.362–12.27) | 0.233# | 1.352 (−0.135–2.425) |
Eicosenoic acid | C20:1 n-9 | 5.34 (4.860–7.483) | 5.787 (4.983–7.009) | 0.583# | −0.119 (−0.364–0.242) | 6.550 (5.726–7.261) | 6.151 (5.337–7.128) | 0.272# | 0.424 (−0.126–0.769) |
Eicosa-dienoic acid | C20:2 n-6 | 5.238 (4.487–6.676) | 5.987 (4.542–6.569) | 0.951 | 0.127 (−0.811–0.583) | 5.0493 (4.126–6.253) | 5.199 (4.435–5.981) | 0.81 | 0.127 (−0.443–0.551) |
Dihomo-γ-Linoleic acid | C20:3 n-6 | 44.416 (39.659–47.495) | 41.626 (36.919–47.670) | 0.929 | 1.638 (−1.572–2.888) | 41.933 (39.131–47.516) | 38.733 (35.309–43.548) | 0.084 | 2.743 (0.195–7.246) |
Arachidonic acid | C20:4 n-6 | 159.677 (128.831–169.561) | 146.238 (136.060–158.549) | 0.308# | 5.4890 (−5.1079–24.766) | 154.717 (135.01–179.618) | 156.270 (132.641–164.080) | 0.209# | 11.712 (−1.005–24.280) |
Eicosapenta-enoic acid | C20:5 n-3 | 17.969 (11.385–24.730) | 15.828 (10.826–22.529) | 0.168 | 0.744 (−0.584–2.694) | 15.567 (12.080–23.746) | 13.6374 (11.4568–20.6670) | 0.2 | 0.903 (0.330–3.0154) |
Docosanoate | C22:0 | 0.436 (0.243–0.803) | 0.787 (0.526–1.066) | 0.012# | −0.359 (−0.505–−0.146) | 0.5993 (0.4372–1.0188) | 0.737 (0.253–0.853) | 0.239# | 0.213 (−0.192–0.346) |
Erucic acid | C22:1 n-9 | 7.328 (6.898–8.415) | 8.730 (7.581–9.637) | 0.05# | −0.927 (−2.220–−0.385) | 6.940 (6.582–7.573) | 7.651 (7.203–8.111) | 0.071# | −0.411 (−0.928–0.122) |
Docosapentaenoic acid ω-3 | C22:5 n-3 | 11.204 (8.975–13.927) | 11.131 (8.707–13.017) | 0.378 | 0.270 (−0.738–0.843) | 11.945 (9.740–14.449) | 11.412 (7.945–12.780) | 0.267 | 0.782 (0.3697–1.1939) |
Docosapentaenoic acid ω-6 | C22:5 n-6 | 1.673 (1.401–2.283) | 1.917 (1.604–2.483) | 0.567 | −0.034 (−0.214–0.094) | 1.860 (1.471–2.430) | 1.681 (1.504–2.419) | 0.314 | 0.152 (−0.008–0.239) |
Docosahexaenoic acid | C22:6 n-3 | 92.858 (74.276–116.778) | 87.830 (81.820–99.411) | 0.239# | 2.672 (−3.136–10.778) | 90.402 (83.206–119.631) | 81.488 (76.371–105.830) | 0.084# | 5.538 (2.542–11.357) |
Lignocerine acid | C24:0 | 0.406 (0.000–0.717) | 1.685 (0.855–2.110) | 0.009# | −1.066 (−1.910–0.285) | 0.350 (0.0003–0.594) | 0.759 (0.043–0.993) | 0.075# | −0.442 (−0.617–−0.042) |
Nervonic acid | C24:1 n-9 | 2.918 (2.396–3.243) | 3.070 (2.434–3.665) | 0.568 | −0.081 (−0.376–0.113) | 2.732 (2.339–3.639) | 2.701 (2.240–3.329) | 0.497 | 0.190 (−0.460–0.450) |
Total-RBC (μg/g) | |||||||||
Myristic Acid | C14:0 | 22.836 (17.212–26.878) | 26.270 (19.644–29.972) | 0.084 | −2.478 (−6.704–0.204) | 26.098 (19.788–31.595) | 22.349 (20.057–36.542) | 0.465 | 0.295 (−4.188–2.787) |
Myristolein acid | C14:1 n-5 | 0.127 (0.000–0.316) | 0.040 (0.000–0.265) | 0.889# | 0.000 (−0.140–0.067) | 0.301 (0.001–0.531) | 0.138 (0.054–0.606) | 0.182# | −0.060 (−0.198–0.002) |
Palmitic acid | C16:0 | 338.150 (267.592–458.512) | 400.180 (294.720–538.391) | 0.032 | −40.619 (−152.844–−0.799) | 367.433 (304.759–437.369) | 343.501 (293.538–500.620) | 0.308# | −5.556 (−78.396–30.194) |
Palmitoleic acid | C16:1 n-7 | 16.349 (12.688–20.673) | 20.828 (14.827–21.795) | 0.091 | −2.966 (−6.931–0.113) | 17.388 (14.054–21.253) | 17.995 (13.766–28.056) | 0.083 | −0.955 (−8.519–0.512) |
Stearic acid | C18:0 | 244.115 (212.576–299.709) | 236.321 (227.664–389.725) | 0.05# | −30.103 (−88.645–0.085) | 229.340 (219.533–263.887) | 233.455 (212.470–281.023) | 0.583# | −2.162 (−12.046–7.652) |
Oleic acid | C18:1 n-9 | 281.487 (269.480–321.058) | 340.480 (276.503–421.203) | 0.06# | −31.176 (−53.726–−1.625) | 318.619 (299.014–371.419) | 348.144 (292.854–372.476) | 0.269 | 0.695 (−52.065–9.262) |
Linoleic acid | C18:2 n-6 | 224.086 (210.522–245.124) | 283.474 (208.235–314.045) | 0.041# | −27.407 (−62.497–−1.267) | 233.857 (224.404–307.236) | 261.821 (220.0564–285.121) | 0.48# | −3.814 (−58.30–14.185) |
α-Linoleic acid | C18:3 n-3 alpha | 4.471 (2.936–5.837) | 4.806 (3.553–9.541) | 0.034# | −1.139 (−1.739–−0.271) | 4.794 (3.947–8.60) | 5.397 (4.010–8.294) | 0.53# | −0.200 (−0.8587–0.5433) |
Eicosenoic acid | C20:1 n-9 | 5.771 (4.362–7.056) | 6.744 (5.836–7.281) | 0.031 | −0.394 (−2.049–0.093) | 5.786 (4.810–6.509) | 6.068 (4.892–6.912) | 0.084# | −0.558 (−0.909–0.081) |
Eicosa-dienoic acid | C20:2 n-6 | 4.079 (3.372–4.719) | 4.529 (4.208–5.115) | 0.18 | −0.194 (−0.890–0.052) | 4.072 (3.703–4.422) | 4.089 (3.970–4.395) | 0.239# | −0.055 (−0.267–0.039) |
Dihomo-γ-Linoleic acid | C20:3 n-6 | 32.6767 (25.9329–36.5855) | 39.1490 (34.5242–41.1978) | 0.013 | −4.2116 (−7.1576–0.5321) | 33.3307 (29.9956–37.4817) | 33.2568 (27.5007–38.7330) | 0.741 | 0.1820 (−4.7518–2.7220) |
Arachidonic acid | C20:4 n-6 | 269.517 (261.385–284.765) | 280.996 (265.664–368.674) | 0.015# | −16.985 (−64.073–7.210) | 298.174 (278.647–311.914) | 292.519 (279.776–297.850) | 0.281 | 15.277 (−13.874–23.519) |
Eicosapenta-enoic acid | C20:5 n-3 | 12.140 (8.772–15.255) | 13.310 (8.181–15.870) | 0.738 | −1.152 (−3.982–−0.3250) | 13.536 (9.583–15.274) | 12.409 (9.473–14.470) | 0.465 | −0.089 (−1.213–1.701) |
Docosanoate | C22:0 | 2.671 (2.251–4.065) | 3.149 (2.482–6.082) | 0.019# | −0.605 (−2.533–−0.079) | 2.843 (2.554–4.023) | 3.065 (2.440–3.647) | 0.638# | 0.046 (−0.307–0.450) |
Erucic acid | C22:1 n-9 | 6.346 (6.018–7.581) | 7.865 (7.411–10.785) | 0.019# | −1.251 (−4.767–−0.811) | 6.286 (5.794–6.636) | 6.751 (6.034–7.203) | 0.308# | −0.474 (−1.131–0.283) |
Docosa-pentaenoic acid ω-3 | C22:5 n-3 | 36.456 (34.872–39.675) | 40.716 (37.685–51.770) | 0.084# | −2.107 (−7.691–1.232) | 39.810 (37.326–43.067) | 38.287 (37.40–41.891) | 0.399 | 1.194 (−1.344–2.491) |
Docosapentaenoic acid ω-6 | C22:5 n-6 | 4.765 (3.293–5.372) | 5.638 (4.832–6.071) | 0.012 | −0.802 (−1.363–−0.420) | 4.880 (3.968–5.815) | 5.269 (4.577–5.580) | 0.574 | −0.086 (−0.339–0.283) |
Docosahexa-enoic acid | C22:6 n-3 | 197.746 (167.709–213.221) | 200.355 (173.026–240.191) | 0.088 | −26.823 (−42.029–−2.051) | 192.054 (166.189–226.601) | 190.915 (169.069–223.006) | 0.59 | 2.531 (−10.018–9.290) |
Lignocerine acid | C24:0 | 5.304 (4.366–7.143) | 6.621 (5.327–11.023) | 0.032 | −1.449 (−3.465–0.208) | 5.391 (4.744–6.764) | 5.564 (4.536–7.146) | 0.239# | 0.623 (−0.427–1.058) |
Nervonic acid | C24:1 n-9 | 10.635 (8.849–12.715) | 12.092 (11.196–13.128) | 0.112 | −0.149 (−3.933–0.275) | 11.454 (9.683–13.231) | 10.575 (9.739–13.225) | 0.921 | 0.249 (−0.726–0.852) |
Fatty Acids | Pre-HD Median (IQR) | Post-HD Median (IQR) | ||||||
---|---|---|---|---|---|---|---|---|
Pre-HD Arterial | Pre-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | Pre-HD A–V Difference | Post-HD Arterial | Post-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | Post-HD A–V Difference | |
Total-Plasma (μg/mL) | ||||||||
Total SFA | 980.036 (709.890–1195.828) | 819.448 (704.758–1313.913) | 0.331 | 41.488 (−11.696–81.741) | 1056.347 (772.398–1326.228) | 927.555 (680.685–1202.097) | 0.091 | 106.329 (39.294–178.681) |
Total MUFA | 844.511 (668.6085–1026.8815) | 781.091 (650.605–1134.145) | 0.452 | 20.134 (−21.531–82.456) | 913.802 (712.350–1110.189) | 809.196 (656.101–1045.294) | 0.076 | 68.754 (42.861–95.648) |
PUFA n-3 | 130.480 (109.134–195.917) | 122.888 (118.934–168.358) | 0.433# | 2.373 (−5.795–14.639) | 138.296 (124.327–205.347) | 118.736 (109.134–160.080) | 0.117# | 8.880 (2.828–20.122) |
PUFA n-6 | 744.004 (722.153–929.411) | 798.519 (686.264–895.465) | 0.433# | 18.340 (−38.246–78.474) | 821.264 (748.646–957.803) | 807.937 (676.254–859.548) | 0.094 | 79.758 (23.246–114.425) |
Total-PUFA | 857.990 (820.586–1136.295) | 908.785 (782.665–1076.363) | 0.433# | 22.907 (−43.998–96.703) | 947.742 (872.870–1160.028) | 915.718 (784.884–1004.691) | 0.103 | 89.139 (25.349–134.547) |
Total-RBC (μg/g) | ||||||||
Total SFA | 595.703 (513.040–757.739) | 670.018 (553.384–972.688) | 0.027 | −56.325 (−277.577–2.217) | 624.941 (551.351–746.70) | 591.402 (534.765–831.952) | 0.182# | −28.462 (−94.268–36.130) |
Total MUFA | 322.825 (305.306–380.602) | 387.006 (329.542–476.590) | 0.034# | −46.965 (−63.638–9.095) | 376.076 (332.646–409.804) | 394.564 (330.508–432.247) | 0.188 | −5.169 (−62.982–7.602) |
PUFA n-3 | 257.166 (218.402–273.419) | 261.911 (235.961–312.850) | 0.078 | −37.862 (−48.270–4.691) | 246.884 (223.435–303.050) | 246.460 (218.649–284.657) | 0.579 | 4.399 (−11.394–14.169) |
PUFA n-6 | 538.579 (527.422–560.087) | 625.916 (544.230–707.882) | 0.008# | −46.288 (−97.802–19.074) | 588.363 (554.219–649.017) | 605.591 (539.772–637.355) | 0.814# | 15.263 (−80.730–38.335) |
Total-PUFA | 784.818 (758.405–818.550) | 905.273 (795.178–1041.732) | 0.023# | −78.630 (−162.449–37.522) | 876.443 (778.130–892.759) | 843.795 (801.30–888.677) | 0.937# | 33.365 (−92.123–67.535) |
Ratio | Pre-HD Median (IQR) | Post-HD Median (IQR) | ||||
---|---|---|---|---|---|---|
Pre-HD Arterial | Pre-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | Post-HD Arterial | Post-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | |
Total-Plasma | ||||||
DHA + EPA/AA | 0.751 (0.627–0.875) | 0.751 (0.627–0.875) | 0.573 | 0.721 (0.610–0.873) | 0.652 (0.595–0.817) | 0.358 |
EPA/AA | 0.105 (0.067–0.154) | 0.098 (0.070–0.154) | 0.3 | 0.101 (0.069–0.152) | 0.081 (0.072–0.130) | 0.61# |
DHA/AA | 0.620 (0.564–0.702) | 0.636 (0.559–0.679) | 0.754# | 0.609 (0.534–0.695) | 0.578 (0.512–0.661) | 0.47 |
DHA/EPA | 6.625 (4.853–7.133) | 6.554 (5.180–7.437) | 0.608 | 6.533 (5.242–7.165) | 6.589 (5.856–7.350) | 0.179 |
n-3/n-6 | 0.183 (0.151–0.212) | 0.183 (0.151–0.212) | 0.878 | 0.186 (0.151–0.210) | 0.165 (0.154–0.218) | 0.84 |
Total-RBC | ||||||
Omega-3 quotient | 11.072 (9.634–13.067) | 11.375 (7.710–12.171) | 0.776 | 11.377 (9.737–12.382) | 11.374 (8.304–12.544) | 0.217 |
DHA + EPA/AA | 0.759 (0.598–0.823) | 0.655 (0.521–0.904) | 0.835 | 0.738 (0.567–0.805) | 0.703 (0.615–0.811) | 0.851 |
EPA/AA | 0.042 (0.030–0.058) | 0.034 (0.030–0.058) | 0.445 | 0.043 (0.032–0.055) | 0.042 (0.034–0.051) | 0.575 |
DHA/AA | 0.710 (0.570–0.769) | 0.620 (0.505–0.847) | 0.908 | 0.695 (0.526–0.737) | 0.661 (0.583–0.749) | 0.759 |
DHA/EPA | 16.161 (12.819–18.593) | 15.261 (14.596–21.717) | 0.814# | 16.428 (12.26–18.764) | 17.380 (13.466–20.360) | 0.929 |
n-3/n-6 | 0.443 (0.404–0.493) | 0.410 (0.352–0.505) | 0.822 | 0.445 (0.361–0.485) | 0.410 (0.388–0.462) | 0.356 |
Ratio | Pre-HD Median (IQR) | Post-HD Median (IQR) | ||||
---|---|---|---|---|---|---|
Pre-HD Arterial | Pre-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | Post-HD Arterial | Post-HD Venous | p Value, t Test (# Paired Wilcoxon Test) | |
Total-Plasma | ||||||
DHA/DPA | 9.146 (6.889–11.009) | 8.987 (7.0171–10.7715) | 0.208 | 8.779 (6.518–11.679) | 9.047 (6.545–13.840) | 0.281 |
C20:4 n-6/C20:3 n-6 (Δ5 SCD) | 3.663 (3.345–4.293) | 3.573 (3.295–4.030) | 0.201 | 3.799 (3.334–4.312) | 3.906 (3.315–4.759) | 0.849 |
C18:3 n-6/C18:2 n-6 (Δ6 SCD) | 0.016 (0.010–0.019) | 0.015 (0.010–0.019) | 0.456# | 0.017 (0.013–0.020) | 0.017 (0.011–0.020) | 0.223# |
C16:1 n-7/C16:0 (Δ9 SCD) | 0.095 (0.079–0.100) | 0.088 (0.081–0.102) | 0.79 | 0.084 (0.072–0.094) | 0.086 (0.076–0.092) | 0.314 |
C18:1 n-9/C18:0 (Δ9 SCD) | 5.807 (5.315–6.423) | 5.764 (4.642–7.018) | 0.937# | 6.290 (4.973–6.424) | 6.005 (4.969–6.274) | 0.484 |
Total-RBC | ||||||
DHA/DPA | 5.283 (3.609–5.794) | 5.015 (3.541–5.929) | 0.813 | 5.110 (3.990–5.553) | 4.985 (4.368–5.839) | 0.859 |
C20:4 n-6/C20:3 n-6 (Δ5 SCD) | 9.405 (7.575–10.389) | 8.057 (6.667–10.316) | 0.638# | 8.659 (7.893–10.517) | 8.145 (7.509–10.891) | 0.44 |
C18:3 n-6/C18:2 n-6 (Δ6 SCD) | 0.011 (0.006–0.013) | 0.011 (0.007–0.013) | 0.651 | 0.011 (0.008–0.013) | 0.011 (0.007–0.014) | 0.87 |
C16:1 n-7/C16:0 (Δ9 SCD) | 0.042 (0.035–0.058) | 0.044 (0.033–0.057) | 0.903 | 0.043 (0.039–0.052) | 0.048 (0.038–0.057) | 0.143 |
C18:1 n-9/C18:0 (Δ9 SCD) | 1.262 (1.068–1.500) | 1.258 (0.914–1.523) | 0.833 | 1.320 (1.184–1.593) | 1.338 (1.177–1.484) | 0.554 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Dogan, I.; Rothe, M.; Reichardt, J.; Knauf, F.; Gollasch, M.; Luft, F.C.; Gollasch, B. Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis. Metabolites 2022, 12, 269. https://doi.org/10.3390/metabo12030269
Liu T, Dogan I, Rothe M, Reichardt J, Knauf F, Gollasch M, Luft FC, Gollasch B. Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis. Metabolites. 2022; 12(3):269. https://doi.org/10.3390/metabo12030269
Chicago/Turabian StyleLiu, Tong, Inci Dogan, Michael Rothe, Jana Reichardt, Felix Knauf, Maik Gollasch, Friedrich C. Luft, and Benjamin Gollasch. 2022. "Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis" Metabolites 12, no. 3: 269. https://doi.org/10.3390/metabo12030269
APA StyleLiu, T., Dogan, I., Rothe, M., Reichardt, J., Knauf, F., Gollasch, M., Luft, F. C., & Gollasch, B. (2022). Bioaccumulation of Blood Long-Chain Fatty Acids during Hemodialysis. Metabolites, 12(3), 269. https://doi.org/10.3390/metabo12030269