Predictive Modeling of Alzheimer’s and Parkinson’s Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid
Abstract
:1. Introduction
2. Results
2.1. PCA
2.2. Prediction Results
2.2.1. Classifying AD against Controls
2.2.2. Classifying PD against Controls
2.2.3. Classifying AD from PD
2.3. Missing Data
2.4. Pathway and Set Enrichment Analysis
3. Discussion
Modeling Limitations
4. Materials and Methods
4.1. Metabolomics
4.2. Preprocessing
4.3. Regression Modeling
4.4. Pathway Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
PD | Parkinson’s Disease |
CSF | Cerebrospinal Fluid |
LEDD | Levodopa Equivalent Daily Dosage |
GBA | Glucosylceramidase |
OR | Odds Ratio |
ROC | Receiver Operating Characteristic |
AUC | Area Under the ROC Curve |
MSEA | Metabolite Set Enrichment Analysis |
PCA | Principal Component Analysis |
CE | Cholesterol Ester |
CER | Ceramides |
DAG | Diacylglycerol |
DCER | Dihydroceramides |
FFA | Free Fatty Acids |
HCER | Hexosylceramides |
LCER | Lactosylceramide |
LPC | Lysophosphatidylcholine |
LPE | Lysophosphatidylethanolamine |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
SM | Sphingomyelin |
TAG | Triacylglycerol |
Appendix A. Summary of Data by Phenotype
Appendix B. Flowchart of Analysis
Appendix C. Distribution in Date of LP Draws
Appendix D. Univariate Untargeted Patterns of Missingness
Appendix E. Precision-Recall Curves and Threshold-Dependent Metrics
Metric | AD v C | PD v C | AD v PD |
---|---|---|---|
F1 score | 0.63 | 0.97 | 0.93 |
Sensitivity | 0.79 | 0.96 | 0.95 |
Specificity | 0.52 | 0.99 | 0.91 |
Positive predictive value | 0.52 | 0.98 | 0.92 |
Negative predictive value | 0.79 | 0.98 | 0.94 |
Appendix F. ROC Curves of Predictive Models including Age and Sex
Appendix G. MSEA Output Tables
SMPDB | |||
---|---|---|---|
Set | Total | Expected | Hits |
Carnitine Synthesis | 3 | 0.67 | 2 |
Betaine Metabolism | 4 | 0.90 | 2 |
Methionine Metabolism | 8 | 1.79 | 3 |
Tyrosine Metabolism | 3 | 0.67 | 1 |
Glycine and Serine Metabolism | 13 | 2.91 | 4 |
Arginine and Proline Metabolism | 8 | 1.79 | 2 |
Tryptophan Metabolism | 8 | 1.79 | 2 |
Histidine Metabolism | 4 | 0.90 | 1 |
Urea Cycle | 5 | 1.12 | 1 |
CSF Disease Library | |||
Set | Total | Expected | Hits |
Aging-Related Metabolites | 3 | 1.1 | 2 |
Leukemia | 13 | 4.8 | 3 |
Alzheimer’s Disease | 14 | 5.2 | 3 |
Different Seizure Disorders | 12 | 4.5 | 1 |
Schizophrenia | 13 | 4.8 | 1 |
Appendix H. Removing Batch Effects for PD vs. Control Analysis
- Fit an elastic net regression model to classify on AD/PD to get coefficient vector . If the left-out observation is a PD subject, exclude it from this model.
- Orthogonalize all control and PD observations () by the coefficient vector, computing
- Use the orthogonalized data to fit a model to classify PD from controls (using the n − 1 observations)
- Use the model to predict the class probability on the left out observation
Appendix I. Lipids Tables for Discriminating AD from PD
Positive Coefficients | |
---|---|
Lipid | OR ± 2SD (>1) |
PC(18:1/18:2) | 1.79 (1.32, 2.41) |
PC(18:1/20:4) | 1.79 (1.55, 2.05) |
FFA(20:3) | 1.75 (1.62, 1.90) |
DAG(16:0/18:1) | 1.55 (1.25, 1.93) |
FFA(18:3) | 1.43 (1.13, 1.82) |
CE(16:1) | 1.34 (1.21, 1.48) |
PC(18:0/22:6) | 1.27 (1.06, 1.52) |
TAG53:2-FA18:1 | 1.23 (0.99, 1.54) |
PC(16:0/22:5) | 1.19 (0.95, 1.48) |
CE(20:3) | 1.16 (0.93, 1.45) |
PC(18:1/16:1) | 1.14 (1.01, 1.28) |
Negative Coefficients | |
Lipid | OR ± 2SD (<1) |
PC(18:0/18:2) | 0.62 (0.38, 1) |
PE(P-16:0/18:1) | 0.64 (0.44, 0.91) |
PE(P-18:0/20:4) | 0.7 (0.63, 0.79) |
TAG48:1-FA16:0 | 0.72 (0.55, 0.93) |
FFA(20:4) | 0.72 (0.63, 0.83) |
TAG46:0-FA16:0 | 0.75 (0.57, 0.99) |
CER(14:0) | 0.78 (0.61, 0.99) |
PE(P-18:0/22:6) | 0.78 (0.73, 0.83) |
HCER(18:0) | 0.79 (0.72, 0.88) |
PE(18:0/20:4) | 0.80 (0.63, 1.02) |
TAG48:0-FA14:0 | 0.82 (0.68, 0.98) |
TAG55:4-FA18:1 | 0.84 (0.72, 0.99) |
DAG(20:0/20:0) | 0.86 (0.65, 1.14) |
PC(18:0/18:0) | 0.87 (0.76, 1.00) |
CE(15:0) | 0.88 (0.75, 1.03) |
Appendix J. Metabolites Appearing in all Leave One Out Models
PD v C | ||
---|---|---|
Profile | Name | Mean OR ± 2SD |
Lipids | HCER(24:0) | 1.22 (1.15, 1.30) |
Targeted | Threonine | 1.19 (1.08, 1.32) |
Targeted | Methylguanidine | 1.19 (1.11, 1.26) |
Lipids | PC(16:0/22:6) | 1.16 (1.03, 1.30) |
Targeted | Dimethylarginine | 1.15 (1.03, 1.29) |
AD v C | ||
Profile | Name | Mean OR ± 2SD |
Targeted | 1-Methyladenosine | 1.27 (1.02, 1.58) |
Targeted | Sarcosine | 1.12 (1.05, 1.19) |
Targeted | Alanine | 1.08 (1.03, 1.14) |
Lipids | CE(20:3) | 1.07 (0.99, 1.15) |
AD v PD | ||
Profile | Name | Mean OR ± 2SD |
Lipids | FFA(20:3) | 4.03 (2.66, 6.11) |
Targeted | Glycylproline | 0.53 (0.33, 0.85) |
Targeted | Lactate | 1.57 (1.10, 2.23) |
Targeted | Creatinine | 0.75 (0.62, 0.90) |
References
- Heron, M. Deaths: Leading Causes for 2017. Natl. Vital. Stat. Rep. 2019, 68, 1–77. [Google Scholar] [PubMed]
- Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; et al. Prevalence of Parkinson’s Disease across North America. NPJ Parkinson’s Disease 2018, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer Disease in the United States (2010–2050) Estimated Using the 2010 Census. Neurology 2013, 80, 1778–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havelund, J.F.; Andersen, A.D.; Binzer, M.; Blaabjerg, M.; Heegaard, N.H.H.; Stenager, E.; Færgeman, N.J.; Gramsbergen, J.B. Changes in Kynurenine Pathway Metabolism in Parkinson Patients with L-DOPA-Induced Dyskinesia. J. Neurochem. 2017, 142, 756–766. [Google Scholar] [CrossRef]
- Trushina, E.; Mielke, M.M. Recent Advances in the Application of Metabolomics to Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Lewis, M.J.; Morrissey, J.A.; Flegel, M.D.; Jeroncic, K.; Xiong, Y.; Cheng, D.; Eisner, R.; Gautam, B.; Tzur, D.; et al. The Human Cerebrospinal Fluid Metabolome. J. Chromatogr. B 2008, 871, 164–173. [Google Scholar] [CrossRef]
- Romeo, M.J.; Espina, V.; Lowenthal, M.; Espina, B.H.; Petricoin, E.F., III; Liotta, L.A. CSF Proteome: A Protein Repository for Potential Biomarker Identification. Expert Rev. Proteom. 2005, 2, 57–70. [Google Scholar] [CrossRef]
- Cheng, S.; Larson, M.G.; McCabe, E.L.; Murabito, J.M.; Rhee, E.P.; Ho, J.E.; Jacques, P.F.; Ghorbani, A.; Magnusson, M.; Souza, A.L.; et al. Distinct Metabolomic Signatures Are Associated with Longevity in Humans. Nat. Commun. 2015, 6, 6791. [Google Scholar] [CrossRef]
- Beger, R.D.; Schnackenberg, L.K.; Holland, R.D.; Li, D.; Dragan, Y. Metabonomic Models of Human Pancreatic Cancer Using 1D Proton NMR Spectra of Lipids in Plasma. Metabolomics 2006, 2, 125–134. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishiumi, S.; Ikeda, A.; Yoshie, T.; Sakai, A.; Matsubara, A.; Izumi, Y.; Tsumura, H.; Tsuda, M.; Nishisaki, H.; et al. A Novel Serum Metabolomics-Based Diagnostic Approach to Pancreatic Cancer. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Prentice, K.J.; Luu, L.; Allister, E.M.; Liu, Y.; Jun, L.S.; Sloop, K.W.; Hardy, A.B.; Wei, L.; Jia, W.; Fantus, I.G.; et al. The Furan Fatty Acid Metabolite CMPF Is Elevated in Diabetes and Induces β Cell Dysfunction. Cell Metab. 2014, 19, 653–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaddurah-Daouk, R.; Rozen, S.; Matson, W.; Han, X.; Hulette, C.M.; Burke, J.R.; Doraiswamy, P.M.; Welsh-Bohmer, K.A. Metabolomic Changes in Autopsy-Confirmed Alzheimer’s Disease. Alzheimer’s Dementia 2011, 7, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, M.N.; Yap, B.W.; Zakaria, Y.; Abdul Majeed, A.B. Metabolites Selection and Classification of Metabolomics Data on Alzheimer’s Disease Using Random Forest. In Soft Computing in Data Science; Communications in Computer and Information Science; Berry, M.W., Mohamed, A., Yap, B.W., Eds.; Springer: Singapore, 2016; Volume 652, pp. 100–112. [Google Scholar] [CrossRef]
- LeWitt, P.A.; Li, J.; Lu, M.; Beach, T.G.; Adler, C.H.; Guo, L. 3-Hydroxykynurenine and Other Parkinson’s Disease Biomarkers Discovered by Metabolomic Analysis. Mov. Disord. 2013, 28, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Willkommen, D.; Lucio, M.; Moritz, F.; Forcisi, S.; Kanawati, B.; Smirnov, K.S.; Schroeter, M.; Sigaroudi, A.; Schmitt-Kopplin, P.; Michalke, B. Metabolomic Investigations in Cerebrospinal Fluid of Parkinson’s Disease. PLoS ONE 2018, 13, e0208752. [Google Scholar] [CrossRef] [Green Version]
- Klatt, S.; Doecke, J.D.; Roberts, A.; Boughton, B.A.; Masters, C.L.; Horne, M.; Roberts, B.R. A Six-Metabolite Panel as Potential Blood-Based Biomarkers for Parkinson’s Disease. NPJ Parkinsons Dis. 2021, 7, 94. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Mata, I.F.; Leverenz, J.B.; Weintraub, D.; Trojanowski, J.Q.; Chen-Plotkin, A.; Deerlin, V.M.V.; Ritz, B.; Rausch, R.; Factor, S.A.; Wood-Siverio, C.; et al. GBA Variants Are Associated with a Distinct Pattern of Cognitive Deficits in Parkinson’s Disease. Mov. Disord. 2016, 31, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I. Principal Component Analysis. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Hwangbo, N.; Zhang, X.; Raftery, D.; Gu, H.; Hu, S.C.; Montine, T.J.; Quinn, J.F.; Chung, K.A.; Hiller, A.L.; Wang, D.; et al. A Metabolomic Aging Clock Using Human Cerebrospinal Fluid. J. Gerontol. Ser. 2021, glab212. [Google Scholar] [CrossRef]
- Sidransky, E.; Lopez, G. The Link between the GBA Gene and Parkinsonism. Lancet Neurol. 2012, 11, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Pankratz, N.; Beecham, G.W.; DeStefano, A.L.; Dawson, T.M.; Doheny, K.F.; Factor, S.A.; Hamza, T.H.; Hung, A.Y.; Hyman, B.T.; Ivinson, A.J.; et al. Meta-Analysis of Parkinson’s Disease: Identification of a Novel Locus, RIT2. Ann. Neurol. 2012, 71, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, K.; Srulijes, K.; Pflederer, S.; Hauser, A.K.; Schulte, C.; Maetzler, W.; Gasser, T.; Berg, D. GBA-Associated Parkinson’s Disease: Reduced Survival and More Rapid Progression in a Prospective Longitudinal Study. Mov. Disord. 2015, 30, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.Y.; Johnson, C.O.; Leverenz, J.B.; Weintraub, D.; Trojanowski, J.Q.; Chen-Plotkin, A.; Van Deerlin, V.M.; Quinn, J.F.; Chung, K.A.; Peterson-Hiller, A.L.; et al. Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol. 2016, 73, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.A.; Andruska, K.M.; Benitez, B.A.; Racette, B.A.; Perlmutter, J.S.; Cruchaga, C. Variants in GBA, SNCA, and MAPT Influence Parkinson Disease Risk, Age at Onset, and Progression. Neurobiol. Aging 2016, 37, 209.e1–209.e7. [Google Scholar] [CrossRef] [Green Version]
- Frolkis, A.; Knox, C.; Lim, E.; Jewison, T.; Law, V.; Hau, D.D.; Liu, P.; Gautam, B.; Ly, S.; Guo, A.C.; et al. SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res. 2010, 38, D480–D487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Jin, H.K.; Bae, J.S. Sphingolipids in Neuroinflammation: A Potential Target for Diagnosis and Therapy. BMB Rep. 2020, 53, 28–34. [Google Scholar] [CrossRef]
- Vanherle, S.; Haidar, M.; Irobi, J.; Bogie, J.F.J.; Hendriks, J.J.A. Extracellular Vesicle-Associated Lipids in Central Nervous System Disorders. Adv. Drug Deliv. Rev. 2020, 159, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and Their Metabolism in Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef]
- Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of Oxidative Stress-Induced Abnormalities in Ceramide and Cholesterol Metabolism in Brain Aging and Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2004, 101, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Holtzman, D.M.; McKeel, D.W.; Kelley, J.; Morris, J.C. Substantial Sulfatide Deficiency and Ceramide Elevation in Very Early Alzheimer’s Disease: Potential Role in Disease Pathogenesis. J. Neurochem. 2002, 82, 809–818. [Google Scholar] [CrossRef]
- Wang, G.; Silva, J.; Dasgupta, S.; Bieberich, E. Long-Chain Ceramide Is Elevated in Presenilin 1 (PS1M146V) Mouse Brain and Induces Apoptosis in PS1 Astrocytes. Glia 2008, 56, 449–456. [Google Scholar] [CrossRef]
- Mielke, M.M.; Haughey, N.J.; Bandaru, V.V.R.; Schech, S.; Carrick, R.; Carlson, M.C.; Mori, S.; Miller, M.I.; Ceritoglu, C.; Brown, T.; et al. Plasma Ceramides Are Altered in Mild Cognitive Impairment and Predict Cognitive Decline and Hippocampal Volume Loss. Alzheimer’s Dementia 2010, 6, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzada, E.; Onguka, O.; Claypool, S.M. Chapter Two–Phosphatidylethanolamine Metabolism in Health and Disease. In International Review of Cell and Molecular Biology; Jeon, K.W., Ed.; Academic Press: Amsterdam, The Netherlands, 2016; Volume 321, pp. 29–88. [Google Scholar] [CrossRef] [Green Version]
- Czubowicz, K.; Jęśko, H.; Wencel, P.; Lukiw, W.J.; Strosznajder, R.P. The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer’s Disease and Other Neurodegenerative Disorders. Mol. Neurobiol. 2019, 56, 5436–5455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Z.; Wang, Y.; Cairns, N.J.; Lantos, P.L.; Dallner, G.; Sindelar, P.J. Decrease and Structural Modifications of Phosphatidylethanolamine Plasmalogen in the Brain with Alzheimer Disease. J. Neuropathol. Exp. Neurol. 1999, 58, 740–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Holtzman, D.M.; McKeel, D.W. Plasmalogen Deficiency in Early Alzheimer’s Disease Subjects and in Animal Models: Molecular Characterization Using Electrospray Ionization Mass Spectrometry. J. Neurochem. 2001, 77, 1168–1180. [Google Scholar] [CrossRef]
- Wuolikainen, A.; Jonsson, P.; Ahnlund, M.; Antti, H.; Marklund, S.L.; Moritz, T.; Forsgren, L.; Andersen, P.M.; Trupp, M. Multi-Platform Mass Spectrometry Analysis of the CSF and Plasma Metabolomes of Rigorously Matched Amyotrophic Lateral Sclerosis, Parkinson’s Disease and Control Subjects. Mol. BioSyst. 2016, 12, 1287–1298. [Google Scholar] [CrossRef]
- Öhman, A.; Forsgren, L. NMR Metabonomics of Cerebrospinal Fluid Distinguishes between Parkinson’s Disease and Controls. Neurosci. Lett. 2015, 594, 36–39. [Google Scholar] [CrossRef]
- Trupp, M.; Jonsson, P.; Öhrfelt, A.; Zetterberg, H.; Obudulu, O.; Malm, L.; Wuolikainen, A.; Linder, J.; Moritz, T.; Blennow, K.; et al. Metabolite and Peptide Levels in Plasma and CSF Differentiating Healthy Controls from Patients with Newly Diagnosed Parkinson’s Disease. J. Park. Dis. 2014, 4, 549–560. [Google Scholar] [CrossRef]
- Luan, H.; Liu, L.F.; Tang, Z.; Zhang, M.; Chua, K.K.; Song, J.X.; Mok, V.C.T.; Li, M.; Cai, Z. Comprehensive Urinary Metabolomic Profiling and Identification of Potential Noninvasive Marker for Idiopathic Parkinson’s Disease. Sci. Rep. 2015, 5, 13888. [Google Scholar] [CrossRef] [Green Version]
- Luan, H.; Liu, L.F.; Meng, N.; Tang, Z.; Chua, K.K.; Chen, L.L.; Song, J.X.; Mok, V.C.T.; Xie, L.X.; Li, M.; et al. LC–MS-Based Urinary Metabolite Signatures in Idiopathic Parkinson’s Disease. J. Proteome Res. 2015, 14, 467–478. [Google Scholar] [CrossRef]
- LeWitt, P.A.; Li, J.; Lu, M.; Guo, L.; Auinger, P. Metabolomic Biomarkers as Strong Correlates of Parkinson Disease Progression. Neurology 2017, 88, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Kumaran, S.S.; Goyal, V.; Sharma, R.K.; Sinha, N.; Dwivedi, S.N.; Srivastava, A.K.; Jagannathan, N.R. Identification of Potential Urine Biomarkers in Idiopathic Parkinson’s Disease Using NMR. Clin. Chim. Acta 2020, 510, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Calvani, R.; Landi, G.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Urbani, A.; Bossola, M.; et al. Circulating Amino Acid Signature in Older People with Parkinson’s Disease: A Metabolic Complement to the EXosomes in PArkiNson Disease (EXPAND) Study. Exp. Gerontol. 2019, 128, 110766. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.A.; Jiménez-Jiménez, F.J.; Gomez, P.; Vargas, C.; Navarro, J.A.; Ortí-Pareja, M.; Gasalla, T.; Benito-León, J.; Bermejo, F.; Arenas, J. Decreased Cerebrospinal Fluid Levels of Neutral and Basic Amino Acids in Patients with Parkinson’s Disease. J. Neurol. Sci. 1997, 150, 123–127. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Oishi, M.; Hara, M.; Takasu, T. Amino Acid Concentration in Dementia of the Alzheimer Type and Multi-Infarct Dementia. Ann. Clin. Lab. Sci. 1996, 26, 275–278. [Google Scholar] [PubMed]
- Fisher, G.H.; D’Aniello, A.; Vetere, A.; Padula, L.; Cusano, G.P.; Man, E.H. Free D-Aspartate and D-Alanine in Normal and Alzheimer Brain. Brain Res. Bull. 1991, 26, 983–985. [Google Scholar] [CrossRef]
- Ciavardelli, D.; Piras, F.; Consalvo, A.; Rossi, C.; Zucchelli, M.; Di Ilio, C.; Frazzini, V.; Caltagirone, C.; Spalletta, G.; Sensi, S.L. Medium-Chain Plasma Acylcarnitines, Ketone Levels, Cognition, and Gray Matter Volumes in Healthy Elderly, Mildly Cognitively Impaired, or Alzheimer’s Disease Subjects. Neurobiol. Aging 2016, 43, 1–12. [Google Scholar] [CrossRef]
- Huo, Z.; Yu, L.; Yang, J.; Zhu, Y.; Bennett, D.A.; Zhao, J. Brain and Blood Metabolome for Alzheimer’s Dementia: Findings from a Targeted Metabolomics Analysis. Neurobiol. Aging 2020, 86, 123–133. [Google Scholar] [CrossRef]
- Castegna, A.; Aksenov, M.; Aksenova, M.; Thongboonkerd, V.; Klein, J.B.; Pierce, W.M.; Booze, R.; Markesbery, W.R.; Butterfield, D.A. Proteomic Identification of Oxidatively Modified Proteins in Alzheimer’s Disease Brain. Part I: Creatine Kinase BB, Glutamine Synthase, and Ubiquitin Carboxy-Terminal Hydrolase L-1. Free. Radic. Biol. Med. 2002, 33, 562–571. [Google Scholar] [CrossRef]
- Aksenov, M.; Aksenova, M.; Butterfield, D.A.; Markesbery, W.R. Oxidative Modification of Creatine Kinase BB in Alzheimer’s Disease Brain. J. Neurochem. 2000, 74, 2520–2527. [Google Scholar] [CrossRef]
- Johnson, R.J.; Gomez-Pinilla, F.; Nagel, M.; Nakagawa, T.; Rodriguez-Iturbe, B.; Sanchez-Lozada, L.G.; Tolan, D.R.; Lanaspa, M.A. Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 560865. [Google Scholar] [CrossRef]
- Schousboe, A.; Sonnewald, U.; Waagepetersen, H.S. Differential Roles of Alanine in GABAergic and Glutamatergic Neurons. Neurochem. Int. 2003, 43, 311–315. [Google Scholar] [CrossRef]
- Haid, M.; Muschet, C.; Wahl, S.; Römisch-Margl, W.; Prehn, C.; Möller, G.; Adamski, J. Long-Term Stability of Human Plasma Metabolites during Storage at −80 °C. J. Proteome Res. 2018, 17, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Stevens, V.L.; Hoover, E.; Wang, Y.; Zanetti, K.A. Pre-Analytical Factors That Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, M.J. High-Dimensional Statistics: A Non-Asymptotic Viewpoint; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Lerche, S.; Schulte, C.; Wurster, I.; Machetanz, G.; Roeben, B.; Zimmermann, M.; Deuschle, C.; Hauser, A.K.; Böhringer, J.; Krägeloh-Mann, I.; et al. The Mutation Matters: CSF Profiles of GCase, Sphingolipids, α-Synuclein in PDGBA. Mov. Disord. 2021, 36, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic Review of Levodopa Dose Equivalency Reporting in Parkinson’s Disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Cholerton, B.A.; Zabetian, C.P.; Quinn, J.F.; Chung, K.A.; Peterson, A.; Espay, A.J.; Revilla, F.J.; Devoto, J.; Watson, G.S.; Hu, S.C.; et al. Pacific Northwest Udall Center of Excellence Clinical Consortium: Study Design and Baseline Cohort Characteristics. J. Parkinsons Dis. 2013, 3, 205–214. [Google Scholar] [CrossRef]
- Kim, H.M.; Nazor, C.; Zabetian, C.P.; Quinn, J.F.; Chung, K.A.; Hiller, A.L.; Hu, S.C.; Leverenz, J.B.; Montine, T.J.; Edwards, K.L.; et al. Prediction of Cognitive Progression in Parkinson’s Disease Using Three Cognitive Screening Measures. Clin. Park. Relat. Disord. 2019, 1, 91–97. [Google Scholar] [CrossRef]
- Shi, M.; Bradner, J.; Hancock, A.M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Kim, H.M.; et al. Cerebrospinal Fluid Biomarkers for Parkinson Disease Diagnosis and Progression. Ann. Neurol. 2011, 69, 570–580. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dong, J.; Raftery, D. Five Easy Metrics of Data Quality for LC–MS-Based Global Metabolomics. Anal. Chem. 2020, 92, 12925–12933. [Google Scholar] [CrossRef]
- Zheng, C.; Gowda, G.A.N.; Raftery, D.; Neuhouser, M.L.; Tinker, L.F.; Prentice, R.L.; Beresford, S.A.A.; Zhang, Y.; Bettcher, L.; Pepin, R.; et al. Evaluation of Potential Metabolomic-Based Biomarkers of Protein, Carbohydrate and Fat Intakes Using a Controlled Feeding Study. Eur. J. Nutr. 2021, 60, 4207–4218. [Google Scholar] [CrossRef]
- Hanson, A.J.; Banks, W.A.; Bettcher, L.F.; Pepin, R.; Raftery, D.; Craft, S. Cerebrospinal Fluid Lipidomics: Effects of an Intravenous Triglyceride Infusion and apoE Status. Metabolomics 2019, 16, 6. [Google Scholar] [CrossRef]
- Ghorasaini, M.; Mohammed, Y.; Adamski, J.; Bettcher, L.; Bowden, J.A.; Cabruja, M.; Contrepois, K.; Ellenberger, M.; Gajera, B.; Haid, M.; et al. Cross-Laboratory Standardization of Preclinical Lipidomics Using Differential Mobility Spectrometry and Multiple Reaction Monitoring. Anal. Chem. 2021, 93, 16369–16378. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef] [PubMed]
- Morris, C. A Finite Selection Model for Experimental Design of the Health Insurance Study. J. Econom. 1979, 11, 43–61. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s Disease: Variation by Age, Gender, and Race/Ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Gillies, G.E.; Pienaar, I.S.; Vohra, S.; Qamhawi, Z. Sex Differences in Parkinson’s Disease. Front. Neuroendocrinol. 2014, 35, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Hendrie, H.C.; Hall, K.S.; Hui, S. The Relationships Between Age, Sex, and the Incidence of Dementia and Alzheimer Disease: A Meta-Analysis. Arch. Gen. Psychiatry 1998, 55, 809. [Google Scholar] [CrossRef]
- Honaker, J.; King, G.; Blackwell, M. Amelia II: A Program for Missing Data. J. Stat. Soft. 2011, 45, 1–47. [Google Scholar] [CrossRef]
- Saar-Tsechansky, M.; Provost, F. Handling Missing Values When Applying Classification Models. J. Mach. Learn. Res. 2007, 8, 1623–1657. [Google Scholar]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting Network Activity from High Throughput Metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wishart, D.S. MSEA: A Web-Based Tool to Identify Biologically Meaningful Patterns in Quantitative Metabolomic Data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Livera, A.M.D.; Sysi-Aho, M.; Jacob, L.; Gagnon-Bartsch, J.A.; Castillo, S.; Simpson, J.A.; Speed, T.P. Statistical Methods for Handling Unwanted Variation in Metabolomics Data. Anal. Chem. 2015, 87, 3606–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control | AD | PD | ||
---|---|---|---|---|
n | 85 | 57 | 56 | |
Age at time of LP | ||||
Duration of disease | N/A | |||
ApoE genotype | 2.3 (9%) 2.4 (1%) 3.3 (53%) 3.4 (33%) 4.4 (4%) | 2.3 (3.5%) 2.4 (3.5%) 3.3 (44%) 3.4 (33%) 4.4 (16%) | 2.2 (1.8%) 2.3 (14.3%) 3.3 (50%) 3.4 (26.8%) 4.4 (7.1%) | |
Race (% white) | 91.7% | 94.7% | 94.6% | |
Sex | 53% M (41 F) | 49% M (29 F) | 70% M (17 F) | |
Control | AD | PD | ||
MMSE total score (0–30) | N/A | |||
Logical memory immediate recall (0–25) | ||||
Category fluency (animals) (0–999) | ||||
Trail Making Test Part A (s) * | ||||
Trail Making Test Part B (s) * | ||||
Logical memory delayed recall (0–25) | ||||
All | No Cognitive Impairment | MCI | Dementia | |
n | 56 | 16 | 36 | 4 |
Sex | 70% M (17 F) | 56% M (7 F) | 70% M (11 F) | 100% M |
Race (% white) | 94.6% | 100% | 91.7% | 100% |
Age of onset of motor symptoms | ||||
Age at time of LP | ||||
Duration of disease | ||||
Levodopa equivalent dose | ||||
MDS-UPDRS III | ||||
Hoehn & Yahr stage | ||||
MoCA |
Targeted Metabolites–Positive Coefficients | |
---|---|
Metabolite | OR ± 2SD (>1) |
1-Methyladenosine | 1.52 (1.43, 1.62) |
Glycine | 1.38 (1.3, 1.46) |
Alanine | 1.38 (1.32, 1.43) |
Sarcosine | 1.21 (1.16, 1.26) |
Acetylcarnitine | 1.19 (1.16, 1.21) |
4-Methoxyphenylacetic acid | 1.17 (1.11, 1.25) |
Sorbitol | 1.15 (1.13, 1.17) |
Lactate | 1.14 (1.12, 1.16) |
Hydrocortisone | 1.14 (1.09, 1.19) |
Homoserine | 1.12 (1.07, 1.16) |
Caffeine | 1.11 (1.04, 1.17) |
Metabolite | OR ± 2SD (<1) |
N-Acetylneuraminic acid | 0.76 (0.71, 0.80) |
Glycocyamine | 0.80 (0.79, 0.82) |
4-Aminobutyric acid | 0.84 (0.81, 0.88) |
Creatine | 0.85 (0.80, 0.90) |
Urocanic acid | 0.86 (0.73, 1.01) |
Homocysteine | 0.88 (0.84, 0.91) |
Uridine | 0.89 (0.85, 0.92) |
Lipids—Positive Coefficients | |
Lipid | OR ± 2SD (>1) |
SM(18:1) | 1.51 (1.42, 1.60) |
CE(16:1) | 1.22 (1.20, 1.25) |
CE(20:1) | 1.19 (0.91, 1.54) |
PC(18:0/20:3) | 1.12 (0.99, 1.26) |
Lipids—Negative Coefficients | |
Lipid | OR ± 2SD (<1) |
PE(P-18:0/22:6) | 0.77 (0.76, 0.79) |
PE(18:0/20:4) | 0.84 (0.79, 0.89) |
PE(18:0/22:6) | 0.90 (0.84, 0.98) |
Targeted Metabolites—Positive Coefficients | |
---|---|
Metabolite | OR ± 2SD (>1) |
Ornithine | 2.10 (1.82, 2.41) |
Glycylproline | 1.75 (1.52, 2.01) |
Levulinic acid | 1.62 (1.43, 1.82) |
Acetylglycine | 1.57 (1.42, 1.73) |
Glycine | 1.57 (1.45, 1.70) |
Creatinine | 1.52 (1.46, 1.58) |
Cytosine | 1.48 (1.28, 1.70) |
Adenosine | 1.45 (1.26, 1.67) |
Pentadecanoic acid | 1.40 (1.32, 1.49) |
Sorbitol | 1.40 (1.30, 1.52) |
N-Acetylethanolamine | 1.39 (1.31, 1.48) |
alpha-Hydroxyisovaleric acid | 1.39 (1.23, 1.57) |
2-aminoadipic acid | 1.36 (1.16, 1.60) |
Methylguanidine | 1.32 (1.27, 1.38) |
Xanthosine | 1.25 (1.20, 1.30) |
Dimethylarginine | 1.22 (1.15, 1.30) |
Homoserine | 1.21 (1.14, 1.28) |
Threonine | 1.20 (1.15, 1.25) |
Cystine | 1.16 (1.09, 1.23) |
3-Hydroxy-12 Ketolithocholic Acid | 1.16 (1.09, 1.23) |
Adenosyl-l-homocysteine | 1.15 (1.08, 1.22) |
6-Methyl-dl-tryptophan | 1.13 (1.06, 1.20) |
Anthranilic acid | 1.12 (1.03, 1.21) |
Fructose | 1.11 (1.02, 1.20) |
Targeted Metabolites—Negative Coefficients | |
Metabolite | OR ± 2SD (<1) |
Indole-3-acetic acid | 0.57 (0.54, 0.61) |
Serine | 0.58 (0.52, 0.64) |
N-Acetylneuraminic acid | 0.61 (0.55, 0.68) |
Urocanic acid | 0.64 (0.53, 0.76) |
Agmatine | 0.65 (0.63, 0.68) |
HIAA | 0.66 (0.60, 0.73) |
Glycocyamine | 0.71 (0.58, 0.87) |
Aspartic acid | 0.76 (0.66, 0.88) |
4-Methylvaleric acid | 0.79 (0.73, 0.85) |
Serotonin | 0.82 (0.77, 0.87) |
Mannose | 0.82 (0.74, 0.90) |
Creatine | 0.83 (0.78, 0.88) |
Xanthine | 0.83 (0.76, 0.90) |
4-Aminobutyric acid | 0.86 (0.81, 0.91) |
4-Methoxyphenylacetic acid | 0.86 (0.81, 0.91) |
Citraconic acid | 0.87 (0.74, 1.02) |
Decanoylcarnitine | 0.89 (0.84, 0.94) |
Lipid | OR ± 2SD (>1) |
PE(P-16:0/18:1) | 1.54 (1.45, 1.63) |
HCER(18:0) | 1.49 (1.43, 1.55) |
FFA(16:1) | 1.46 (1.30, 1.65) |
SM(18:1) | 1.42 (1.26, 1.60) |
FFA(24:0) | 1.22 (1.11, 1.35) |
PC(16:0/20:2) | 1.21 (0.93, 1.57) |
FFA(20:2) | 1.20 (0.94, 1.52) |
CE(20:1) | 1.20 (0.98, 1.46) |
DAG(20:0/20:0) | 1.17 (0.96, 1.43) |
PE(16:0/22:6) | 1.16 (0.97, 1.39) |
LPC(18:1) | 1.11 (1.06, 1.15) |
Lipids—Negative Coefficients | |
Lipid | OR ± 2SD (<1) |
PC(18:1/18:2) | 0.49 (0.45, 0.53) |
FFA(18:0) | 0.64 (0.53, 0.76) |
PE(18:1/18:1) | 0.65 (0.48, 0.88) |
FFA(24:1) | 0.68 (0.61, 0.75) |
PC(18:1/20:4) | 0.72 (0.64, 0.81) |
PC(18:0/22:6) | 0.76 (0.70, 0.82) |
PC(18:1/16:1) | 0.88 (0.79, 0.97) |
Targeted Metabolites—Positive Coefficients | |
---|---|
Metabolite | OR ± 2SD (>1) |
Serine | 1.63 (1.36, 1.95) |
Alanine | 1.62 (1.46, 1.79) |
Indole-3-acetic acid | 1.52 (1.46, 1.58) |
Xanthine | 1.42 (1.26, 1.60) |
Aspartic acid | 1.40 (1.32, 1.49) |
Caffeine | 1.40 (1.30, 1.52) |
Sarcosine | 1.22 (1.15, 1.30) |
HIAA | 1.20 (1.11, 1.30) |
N-glycyl-l-proline | 1.16 (1.01, 1.34) |
Glycodeoxycholic acid | 1.15 (1.06, 1.25) |
4-Methoxyphenylacetic acid | 1.14 (1.12, 1.16) |
Serotonin | 1.13 (1.08, 1.17) |
Targeted Metabolites—Negative Coefficients | |
Metabolite | OR ± 2SD (<1) |
Ornithine | 0.52 (0.51, 0.53) |
alpha-Hydroxyisovaleric acid | 0.63 (0.58, 0.68) |
Homocysteine | 0.64 (0.59, 0.70) |
Histidine | 0.70 (0.62, 0.79) |
Creatinine | 0.72 (0.66, 0.78) |
Glycylproline | 0.73 (0.64, 0.82) |
Levulinic acid | 0.76 (0.70, 0.83) |
Adenosine | 0.77 (0.67, 0.89) |
N-Acetylethanolamine | 0.81 (0.75, 0.88) |
Acetyl-l-glutamine | 0.86 (0.79, 0.93) |
Targeted Metabolites—AD v C | |
---|---|
Metabolite | OR (AD v C) |
Citraconic acid | 0.53 |
Phenylalanine | 1.85 |
Creatinine | 1.59 |
Glucosamine | 1.46 |
Amiloride | 1.42 |
N-Acetylneuraminic acid | 0.71 |
Mannose | 0.73 |
Male | 0.85 |
Age | 1.07 |
Creatine | 1.02 |
Lipids—PD v C | |
Lipid | OR (PD v C) |
Male | 1.85 |
TAG46:0-FA16:0 | 1.77 |
DAG(18:1/22:6) | 1.08 |
Age | 1.04 |
Lipids—AD v PD | |
Lipid | OR (AD v PD) |
Male | 0.25 |
PE(18:1/18:1) | 0.68 |
PC(16:0/14:0) | 0.74 |
TAG52:4-FA16:1 | 1.17 |
CE(18:4) | 1.10 |
Age | 1.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwangbo, N.; Zhang, X.; Raftery, D.; Gu, H.; Hu, S.-C.; Montine, T.J.; Quinn, J.F.; Chung, K.A.; Hiller, A.L.; Wang, D.; et al. Predictive Modeling of Alzheimer’s and Parkinson’s Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites 2022, 12, 277. https://doi.org/10.3390/metabo12040277
Hwangbo N, Zhang X, Raftery D, Gu H, Hu S-C, Montine TJ, Quinn JF, Chung KA, Hiller AL, Wang D, et al. Predictive Modeling of Alzheimer’s and Parkinson’s Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites. 2022; 12(4):277. https://doi.org/10.3390/metabo12040277
Chicago/Turabian StyleHwangbo, Nathan, Xinyu Zhang, Daniel Raftery, Haiwei Gu, Shu-Ching Hu, Thomas J. Montine, Joseph F. Quinn, Kathryn A. Chung, Amie L. Hiller, Dongfang Wang, and et al. 2022. "Predictive Modeling of Alzheimer’s and Parkinson’s Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid" Metabolites 12, no. 4: 277. https://doi.org/10.3390/metabo12040277
APA StyleHwangbo, N., Zhang, X., Raftery, D., Gu, H., Hu, S. -C., Montine, T. J., Quinn, J. F., Chung, K. A., Hiller, A. L., Wang, D., Fei, Q., Bettcher, L., Zabetian, C. P., Peskind, E. R., Li, G., Promislow, D. E. L., Davis, M. Y., & Franks, A. (2022). Predictive Modeling of Alzheimer’s and Parkinson’s Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid. Metabolites, 12(4), 277. https://doi.org/10.3390/metabo12040277