Maternal and Fetal Metabolites in Gestational Diabetes Mellitus: A Narrative Review
Abstract
:1. Introduction
2. Maternal Metabolites in Gestational Diabetes Mellitus
2.1. Maternal Carbohydrate Metabolites in Gestational Diabetes Mellitus
2.2. Maternal Lipid Metabolites in Gestational Diabetes Mellitus
2.3. Maternal Amino Acid Metabolites in Gestational Diabetes Mellitus
2.4. Other Maternal Metabolites in Gestational Diabetes Mellitus
3. Associations of Gestational Diabetes Mellitus with Fetal Metabolites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Preda, A.; Pădureanu, V.; Moța, M.; Ștefan, A.G.; Comănescu, A.C.; Radu, L.; Mazilu, E.R.; Vladu, I.M. Analysis of Maternal and Neonatal Complications in a Group of Patients with Gestational Diabetes Mellitus. Medicina 2021, 57, 1170. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas. 10th ed. 2021. Available online: https://diabetesatlas.org/atlas/tenth-edition (accessed on 17 February 2022).
- World Health Organization. Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy; World Health Organization: Geneva, Switzerland, 2013; Available online: http://apps.who.int/iris/bitstream/10665/85975/1/WHO_NMH_MND_13.2_eng.pdf (accessed on 17 February 2022).
- Hod, M.; Kapur, A.; Sacks, D.A.; Hadar, E.; Agarwal, M.; Di Renzo, G.C.; Cabero Roura, L.; McIntyre, H.D.; Morris, J.L.; Divakar, H. The International Federation of Gynecology and Obstetrics (FIGO) initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int. J. Gynaecol. Obstet. 2015, 131 (Suppl. S3), S173–S211. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Professional Practice Committee; Draznin, B.; Aroda, V.R.; Bakris, G.; Benson, G.; Brown, F.M.; Freeman, R.; Green, J.; Huang, E.; Isaacs, D.; et al. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef]
- Vasile, F.C.; Preda, A.; Ștefan, A.G.; Vladu, M.I.; Forțofoiu, M.C.; Clenciu, D.; Gheorghe, I.O.; Forțofoiu, M.; Moța, M. An Update of Medical Nutrition Therapy in Gestational Diabetes Mellitus. J. Diabetes Res. 2021, 2021, 5266919. [Google Scholar] [CrossRef]
- O’Sullivan, J.B.; Mahan, C.M. Criteria for the oral glucose tolerance test in pregnancy. Diabetes 1964, 13, 278–2858. [Google Scholar]
- Dalfrà, M.G.; Burlina, S.; Del Vescovo, G.G.; Lapolla, A. Genetics and Epigenetics: New Insight on Gestational Diabetes Mellitus. Front. Endocrinol. 2020, 11, 602477. [Google Scholar] [CrossRef]
- Koning, S.H.; Hoogenberg, K.; Lutgers, H.L.; Van den Berg, P.P.; Wolffenbuttel, B.H.R. Gestational diabetes mellitus: Current knowledge and unmet needs. J. Diabetes 2016, 8, 770–781. [Google Scholar] [CrossRef]
- Lapolla, A.; Metzger, B.E. The post-HAPO situation with gestational diabetes: The bright and dark sides. Acta Diabetol. 2018, 55, 885–892. [Google Scholar] [CrossRef]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 110–116. [Google Scholar] [CrossRef]
- Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Zaharie, M.; Carstea, D.; Streba, C.; Mitrut, P.; Glodeanu, A.; Cârstea, A.; Zaharie, S.; Dascalu, I.; Ţuculină, M.; Bunget, A.; et al. Renal Dysfunction—A Possible Marker of Severity of Heart Failure. Revista de Chimie 2018, 69, 1435–1440. [Google Scholar] [CrossRef]
- Schofield, J.D.; Liu, Y.; Rao-Balakrishna, P.; Malik, R.A.; Soran, H. Diabetes Dyslipidemia. Diabetes Ther. 2016, 7, 203–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cârstea, D.; Streba, L.A.; Glodeanu, A.; Cârstea, A.P.; Vancu, M.; Ninulescu, A.M. The accuracy of combined physical examination and ultrasonography for the detection of abdominal aorta aneurysm. Rom. J. Morphol. Embryol. 2008, 49, 569–572. [Google Scholar]
- Wang, Q.Y.; You, L.H.; Xiang, L.L.; Zhu, Y.T.; Zeng, Y. Current progress in metabolomics of gestational diabetes mellitus. World J. Diabetes 2021, 12, 1164–1186. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef]
- Muthubharathi, B.C.; Gowripriya, T.; Balamurugan, K. Metabolomics: Small molecules that matter more. Mol. Omics 2021, 17, 210–229. [Google Scholar] [CrossRef]
- Alesi, S.; Ghelani, D.; Rassie, K.; Mousa, A. Metabolomic Biomarkers in Gestational Diabetes Mellitus: A Review of the Evidence. Int. J. Mol. Sci. 2021, 22, 5512. [Google Scholar] [CrossRef]
- Iida, M.; Harada, S.; Takebayashi, T. Application of Metabolomics to Epidemiological Studies of Atherosclerosis and Cardiovascular Disease. J. Atheroscler. Thromb. 2019, 26, 747–757. [Google Scholar] [CrossRef] [Green Version]
- McGarrah, R.W.; Crown, S.B.; Zhang, G.F.; Shah, S.H.; Newgard, C.B. Cardiovascular Metabolomics. Circ. Res. 2018, 122, 1238–1258. [Google Scholar] [CrossRef]
- Cheng, S.; Shah, S.H.; Corwin, E.J.; Fiehn, O.; Fitzgerald, R.L.; Gerszten, R.E.; Illig, T.; Rhee, E.P.; Srinivas, P.R.; Wang, T.J.; et al. American Heart Association Council on Functional Genomics and Translational Biology; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Stroke Council. Potential Impact and Study Considerations of Metabolomics in Cardiovascular Health and Disease: A Scientific Statement from the American Heart Association. Circ. Cardiovasc. Genet. 2017, 10, e000032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, J.; Xiong, G.; Bentley-Lewis, R. A systematic review of metabolite profiling in gestational diabetes mellitus. Diabetologia 2014, 57, 2453–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Francis, E.; Hu, G.; Chen, L. Metabolomic profiling of women with gestational diabetes mellitus and their offspring: Review of metabolomics studies. J. Diabetes Complicat. 2018, 32, 512–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satheesh, G.; Ramachandran, S.; Jaleel, A. Metabolomics-Based Prospective Studies and Prediction of Type 2 Diabetes Mellitus Risks. Metab. Syndr. Relat. Disord. 2020, 18, 1–9. [Google Scholar] [CrossRef]
- Mao, X.; Chen, X.; Chen, C.; Zhang, H.; Law, K.P. Metabolomics in gestational diabetes. Clin. Chim. Acta 2017, 475, 116–127. [Google Scholar] [CrossRef]
- McCabe, C.F.; Perng, W. Metabolomics of Diabetes in Pregnancy. Curr. Diab. Rep. 2017, 17, 57. [Google Scholar] [CrossRef]
- Mokkala, K.; Vahlberg, T.; Houttu, N.; Koivuniemi, E.; Laitinen, K. Distinct Metabolomic Profile Because of Gestational Diabetes and its Treatment Mode in Women with Overweight and Obesity. Obesity 2020, 28, 1637–1644. [Google Scholar] [CrossRef]
- Lai, M.; Liu, Y.; Ronnett, G.V.; Wu, A.; Cox, B.J.; Dai, F.F.; Röst, H.L.; Gunderson, E.P.; Wheeler, M.B. Amino acid and lipid metabolism in post-gestational diabetes and progression to type 2 diabetes: A metabolic profiling study. PLoS Med. 2020, 17, e1003112. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, J.; He, X.; Huang, M.; Yang, X.; He, L.; Qiu, Y.; Lou, Y. Plasma metabolites, especially lipid metabolites, are altered in pregnant women with gestational diabetes mellitus. Clin. Chim. Acta 2021, 517, 139–148. [Google Scholar] [CrossRef]
- Shokry, E.; Marchioro, L.; Uhl, O.; Bermúdez, M.G.; García-Santos, J.A.; Segura, M.T.; Campoy, C.; Koletzko, B. Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: Results from the PREOBE cohort study. Acta Diabetol. 2019, 56, 421–430. [Google Scholar] [CrossRef]
- Hou, W.; Meng, X.; Zhao, A.; Zhao, W.; Pan, J.; Tang, J.; Huang, Y.; Li, H.; Jia, W.; Liu, F.; et al. Development of Multimarker Diagnostic Models from Metabolomics Analysis for Gestational Diabetes Mellitus (GDM). Mol. Cell. Proteom. 2018, 17, 431–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raczkowska, B.A.; Mojsak, P.; Rojo, D.; Telejko, B.; Paczkowska-Abdulsalam, M.; Hryniewicka, J.; Zielinska-Maciulewska, A.; Szelachowska, M.; Gorska, M.; Barbas, C.; et al. Gas Chromatography-Mass Spectroscopy-Based Metabolomics Analysis Reveals Potential Biochemical Markers for Diagnosis of Gestational Diabetes Mellitus. Front. Pharmacol. 2021, 12, 770240. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, J.; Li, S.; Leng, J.; Li, W.; Yang, W.; Huo, X.; Chen, L.; Ma, R.C.W.; Hu, G.; et al. Circulating Lysophosphatidylcholines in Early Pregnancy and Risk of Gestational Diabetes in Chinese Women. J. Clin. Endocrinol. Metab. 2020, 105, e982–e993. [Google Scholar] [CrossRef] [PubMed]
- Odenkirk, M.T.; Stratton, K.G.; Gritsenko, M.A.; Bramer, L.M.; Webb-Robertson, B.M.; Bloodsworth, K.J.; Weitz, K.K.; Lipton, A.K.; Monroe, M.E.; Ash, J.R.; et al. Unveiling molecular signatures of preeclampsia and gestational diabetes mellitus with multiomics and innovative cheminformatics visualization tools. Mol. Omics 2020, 16, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pan, L.L.; Lv, S.; Yang, Q.; Zhang, H.; Chen, W.; Lv, Z.; Sun, J. Alterations of Gut Microbiota and Blood Lipidome in Gestational Diabetes Mellitus with Hyperlipidemia. Front. Physiol. 2019, 10, 1015. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Gao, W.; Xu, Y.; Xie, M.; Tang, S.; Yin, P.; Guo, S.; Chu, S.; Sultana, S.; Cui, S. Serum metabonomics study of pregnant women with gestational diabetes mellitus based on LC-MS. Saudi J. Biol. Sci. 2019, 26, 2057–2063. [Google Scholar] [CrossRef]
- Rahman, M.L.; Feng, Y.; Fiehn, O.; Tsai, M.Y.; Tekola-Ayele, F.; Zhu, Y.; Zhang, C. Plasma Lipidomics and Gestational Diabetes—A Longitudinal Study in a Multiracial Cohort. Diabetes 2018, 67, 174. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, S.; Fang, C.; Wang, C.; Yang, Y.; Liu, C.; Hu, J.; Huang, Y. Amino acids levels in early pregnancy predict subsequent gestational diabetes. J. Diabetes 2020, 12, 503–511. [Google Scholar] [CrossRef]
- Sakurai, K.; Eguchi, A.; Watanabe, M.; Yamamoto, M.; Ishikawa, K.; Mori, C. Exploration of predictive metabolic factors for gestational diabetes mellitus in Japanese women using metabolomic analysis. J. Diabetes Investig. 2019, 10, 513–520. [Google Scholar] [CrossRef]
- O’Neill, K.; Alexander, J.; Azuma, R.; Xiao, R.; Snyder, N.W.; Mesaros, C.A.; Blair, I.A.; Pinney, S.E. Gestational Diabetes Alters the Metabolomic Profile in 2nd Trimester Amniotic Fluid in a Sex-Specific Manner. Int. J. Mol. Sci. 2018, 19, 2696. [Google Scholar] [CrossRef] [Green Version]
- Iacobazzi, V.; Infantino, V. Citrate–new functions for an old metabolite. Biol. Chem. 2014, 395, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Gralka, E.; Luchinat, C.; Tenori, L.; Ernst, B.; Thurnheer, M.; Schultes, B. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am. J. Clin. Nutr. 2015, 102, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.W. Gestational diabetes, pregnancy hypertension, and late vascular disease. Diabetes Care 2007, 30 (Suppl. S2), S246–S250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cibickova, L.; Schovanek, J.; Karasek, D. Changes in serum lipid levels during pregnancy in women with gestational diabetes. A narrative review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc 2021, 165, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, K.K.; Spracklen, C.N.; Smith, C.J.; Robinson, J.G.; Saftlas, A.F. Maternal lipid levels during pregnancy and gestational diabetes: A systematic review and meta-analysis. BJOG 2015, 122, 643–651. [Google Scholar] [CrossRef]
- Ebbesson, S.O.; Tejero, M.E.; López-Alvarenga, J.C.; Harris, W.S.; Ebbesson, L.O.; Devereux, R.B.; MacCluer, J.W.; Wenger, C.; Laston, S.; Fabsitz, R.R.; et al. Individual saturated fatty acids are associated with different components of insulin resistance and glucose metabolism: The GOCADAN study. Int. J. Circumpolar Health 2010, 69, 344–351. [Google Scholar] [CrossRef]
- Boden, G.; Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur. J. Clin. Investig. 2002, 32 (Suppl. S3), 14–23. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 2010, 92, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Sansone, A.; Tolika, E.; Louka, M.; Sunda, V.; Deplano, S.; Melchiorre, M.; Anagnostopoulos, D.; Chatgilialoglu, C.; Formisano, C.; Di Micco, R.; et al. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles. PLoS ONE 2016, 11, e0152378. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, H.; Chung, A.C.K.; Xiang, L.; Li, X.; Zheng, Y.; Luan, H.; Zhu, L.; Liu, W.; Peng, Y.; et al. Large-Scale Longitudinal Metabolomics Study Reveals Different Trimester-Specific Alterations of Metabolites in Relation to Gestational Diabetes Mellitus. J. Proteome Res. 2019, 18, 292–300. [Google Scholar] [CrossRef]
- Maresh, M.; Gillmer, M.D.; Beard, R.W.; Alderson, C.S.; Bloxham, B.A.; Elkeles, R.S. The effect of diet and insulin on metabolic profiles of women with gestational diabetes mellitus. Diabetes 1985, 34 (Suppl. S2), 88–93. [Google Scholar] [CrossRef] [PubMed]
- Pappa, K.I.; Anagnou, N.P.; Salamalekis, E.; Bikouvarakis, S.; Maropoulos, G.; Anogianaki, N.; Evangeliou, A.; Koumantakis, E. Gestational diabetes exhibits lack of carnitine deficiency despite relatively low carnitine levels and alterations in ketogenesis. J. Matern. Fetal Neonatal Med. 2005, 17, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Liu, F.; Li, S. Metabolic Adaptations in Pregnancy: A Review. Ann. Nutr. Metab. 2017, 70, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Bronisz, A.; Ozorowski, M.; Hagner-Derengowska, M. Pregnancy Ketonemia and Development of the Fetal Central Nervous System. Int. J. Endocrinol. 2018, 2018, 1242901. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yu, J.; Liu, X.; Wang, W.; Chen, Z.; Qiao, J.; Liu, X.; Jin, H.; Li, X.; Wen, L.; et al. Gestational diabetes mellitus-associated changes in the breast milk metabolome alters the neonatal growth trajectory. Clin. Nutr. 2021, 40, 4043–4054. [Google Scholar] [CrossRef]
- Floegel, A.; Stefan, N.; Yu, Z.; Mühlenbruch, K.; Drogan, D.; Joost, H.G.; Fritsche, A.; Häring, H.U.; Hrabě de Angelis, M.; Peters, A.; et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.G.; Dunn, W.B.; Banerjee, M.; Brown, M.; Broadhurst, D.I.; Goodacre, R.; Cooper, G.J.; Kell, D.B.; Cruickshank, J.K. Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS ONE 2014, 9, e103217. [Google Scholar] [CrossRef] [Green Version]
- Wang-Sattler, R.; Yu, Y.; Mittelstrass, K.; Lattka, E.; Altmaier, E.; Gieger, C.; Ladwig, K.H.; Dahmen, N.; Weinberger, K.M.; Hao, P.; et al. Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—First results from the KORA study. PLoS ONE 2008, 3, e3863. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; Yu, C.; Hoofnagle, A.; Hari, N.; Jensen, P.N.; Fretts, A.M.; Umans, J.G.; Howard, B.V.; Sitlani, C.M.; Siscovick, D.S.; et al. Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: The Strong Heart Family Study. Diabetes 2018, 67, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Felig, P.; Marliss, E.; Cahill, G.F., Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 1969, 281, 811–816. [Google Scholar] [CrossRef]
- Guasch-Ferrè, M.; Hruby, A.; Toledo, E.; Clish, C.B.; Martínez-Gonz´alez, M.A.; Salas-Salvad´o, J.; Hu, F.B. Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care 2016, 39, 833–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55, 2565–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrović, O.; Belci, D. A critical appraisal and potentially new conceptual approach to screening and diagnosis of gestational diabetes. J. Obstet. Gynaecol. 2017, 37, 691–699. [Google Scholar] [CrossRef] [PubMed]
- White, S.L.; Pasupathy, D.; Sattar, N.; Nelson, S.M.; Lawlor, D.A.; Briley, A.L.; Seed, P.T.; Welsh, P.; Poston, L. UPBEAT Consortium. Metabolic profiling of gestational diabetes in obese women during pregnancy. Diabetologia 2017, 60, 1903–1912. [Google Scholar] [CrossRef] [Green Version]
- Enquobahrie, D.A.; Denis, M.; Tadesse, M.G.; Gelaye, B.; Ressom, H.W.; Williams, M.A. Maternal Early Pregnancy Serum Metabolites and Risk of Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2015, 100, 4348–4356. [Google Scholar] [CrossRef] [Green Version]
- Bentley-Lewis, R.; Huynh, J.; Xiong, G.; Lee, H.; Wenger, J.; Clish, C.; Nathan, D.; Thadhani, R.; Gerszten, R. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia 2015, 58, 1329–1332. [Google Scholar] [CrossRef] [Green Version]
- Nevalainen, J.; Sairanen, M.; Appelblom, H.; Gissler, M.; Timonen, S.; Ryynänen, M. First-Trimester Maternal Serum Amino Acids and Acylcarnitines Are Significant Predictors of Gestational Diabetes. Rev. Diabet. Stud. 2016, 13, 236–245. [Google Scholar] [CrossRef]
- Leitner, M.; Fragner, L.; Danner, S.; Holeschofsky, N.; Leitner, K.; Tischler, S.; Doerfler, H.; Bachmann, G.; Sun, X.; Jaeger, W.; et al. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM). Front. Mol. Biosci. 2017, 4, 84. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, E.R.; Wong, E.A.; Webb, K.E., Jr. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef]
- Menni, C.; Fauman, E.; Erte, I.; Perry, J.R.; Kastenmüller, G.; Shin, S.Y.; Petersen, A.K.; Hyde, C.; Psatha, M.; Ward, K.J.; et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013, 62, 4270–4276. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Ni, Y.; Ma, X.; Bao, Y.; Liu, J.; Huang, F.; Hu, C.; Xie, G.; Zhao, A.; Jia, W. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci. Rep. 2016, 6, 20594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson-Hall, U.; Gustavsson, C.; Pedersen, A.; Malmodin, D.; Joelsson, L.; Holmäng, A. Higher Concentrations of BCAAs and 3-HIB Are Associated with Insulin Resistance in the Transition from Gestational Diabetes to Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 4207067. [Google Scholar] [CrossRef] [PubMed]
- Allalou, A.; Nalla, A.; Prentice, K.J.; Liu, Y.; Zhang, M.; Dai, F.F.; Ning, X.; Osborne, L.R.; Cox, B.J.; Gunderson, E.P.; et al. A Predictive Metabolic Signature for the Transition from Gestational Diabetes Mellitus to Type 2 Diabetes. Diabetes 2016, 65, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Cetin, I.; de Santis, M.S.; Taricco, E.; Radaelli, T.; Teng, C.; Ronzoni, S.; Spada, E.; Milani, S.; Pardi, G. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2005, 192, 610–617. [Google Scholar] [CrossRef]
- Fu, L.; Bruckbauer, A.; Li, F.; Cao, Q.; Cui, X.; Wu, R.; Shi, H.; Zemel, M.B.; Xue, B. Leucine amplifies the effects of metformin on insulin sensitivity and glycemic control in diet-induced obese mice. Metabolism 2015, 64, 845–856. [Google Scholar] [CrossRef]
- Smith, G.I.; Yoshino, J.; Stromsdorfer, K.L.; Klein, S.J.; Magkos, F.; Reeds, D.N.; Klein, S.; Mittendorfer, B. Protein Ingestion Induces Muscle Insulin Resistance Independent of Leucine-Mediated mTOR Activation. Diabetes 2015, 64, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Lapworth, A.L.; An, J.; Wang, L.; McGarrah, R.W.; Stevens, R.D.; Ilkayeva, O.; George, T.; Muehlbauer, M.J.; Bain, J.R.; et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016, 5, 538–551. [Google Scholar] [CrossRef]
- Taylor, K.; Ferreira, D.L.S.; West, J.; Yang, T.; Caputo, M.; Lawlor, D.A. Differences in Pregnancy Metabolic Profiles and Their Determinants between White European and South Asian Women: Findings from the Born in Bradford Cohort. Metabolites 2019, 9, 190. [Google Scholar] [CrossRef] [Green Version]
- Connelly, M.A.; Otvos, J.D.; Shalaurova, I.; Playford, M.P.; Mehta, N.N. GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J. Transl. Med. 2017, 15, 219. [Google Scholar] [CrossRef]
- Li, J.; Huo, X.; Cao, Y.F.; Li, S.N.; Du, Z.; Shao, P.; Leng, J.; Zhang, C.; Sun, X.Y.; Ma, R.C.W.; et al. Bile acid metabolites in early pregnancy and risk of gestational diabetes in Chinese women: A nested case-control study. EBioMedicine 2018, 35, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, X.; Li, J.; Cao, Y.F.; Li, S.N.; Shao, P.; Leng, J.; Li, W.; Liu, J.; Yang, K.; Ma, R.C.W.; et al. Trimethylamine N-Oxide Metabolites in Early Pregnancy and Risk of Gestational Diabetes: A Nested Case-Control Study. J. Clin. Endocrinol. Metab. 2019, 104, 5529–5539. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, Y.; Huang, T.; Zhang, Y.; Li, Z.; Luo, C.; Luo, Y.; Yuan, H.; Hisatome, I.; Yamamoto, T.; et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem. Biophys. Res. Commun. 2014, 447, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Wolak, T.; Sergienko, R.; Wiznitzer, A.; Paran, E.; Sheiner, E. High uric acid level during the first 20 wk of pregnancy is associated with higher risk for gestational diabetes mellitus and mild preeclampsia. Hypertens Pregnancy 2012, 31, 307–315. [Google Scholar] [CrossRef]
- Van der Schaft, N.; Brahimaj, A.; Wen, K.X.; Franco, O.H.; Dehghan, A. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study. PLoS ONE 2017, 12, e0179482. [Google Scholar] [CrossRef] [Green Version]
- Law, K.P.; Han, T.L.; Mao, X.; Zhang, H. Tryptophan and purine metabolites are consistently upregulated in the urinary metabolome of patients diagnosed with gestational diabetes mellitus throughout pregnancy: A longitudinal metabolomics study of Chinese pregnant women part 2. Clin. Chim. Acta 2017, 468, 126–139. [Google Scholar] [CrossRef]
- Lu, Y.P.; Reichetzeder, C.; Prehn, C.; von Websky, K.; Slowinski, T.; Chen, Y.P.; Yin, L.H.; Kleuser, B.; Yang, X.S.; Adamski, J.; et al. Fetal Serum Metabolites Are Independently Associated with Gestational Diabetes Mellitus. Cell. Physiol. Biochem. 2018, 45, 625–638. [Google Scholar] [CrossRef]
- Hedderson, M.M.; Ferrara, A.; Sacks, D.A. Gestational diabetes mellitus and lesser degrees of pregnancy hyperglycemia: Association with increased risk of spontaneous preterm birth. Obstet. Gynecol. 2003, 102, 850–856. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.X.; Li, X.W.; Fu, W.; Zhang, W.Q. Metabolomic Research on Newborn Infants with Intrauterine Growth Restriction. Medicine 2016, 95, e3564. [Google Scholar] [CrossRef]
- Athanasiadis, A.P.; Michaelidou, A.M.; Fotiou, M.; Menexes, G.; Theodoridis, T.D.; Ganidou, M.; Tzevelekis, B.; Assimakopoulos, E.; Tarlatzis, B.C. Correlation of 2nd trimester amniotic fluid amino acid profile with gestational age and estimated fetal weight. J. Matern. Fetal Neonatal. Med. 2011, 24, 1033–1038. [Google Scholar] [CrossRef]
- Camelo, J.S., Jr.; Martinez, F.E.; Gonçalves, A.L.; Monteiro, J.P.; Jorge, S.M. Plasma amino acids in pregnancy, placental intervillous space and preterm newborn infants. Braz. J. Med. Biol. Res. 2007, 40, 971–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dani, C.; Bresci, C.; Berti, E.; Ottanelli, S.; Mello, G.; Mecacci, F.; Breschi, R.; Hu, X.; Tenori, L.; Luchinat, C. Metabolomic profile of term infants of gestational diabetic mothers. J. Matern. Fetal Neonatal Med. 2014, 27, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhang, J.; Liu, L.; Zhang, X.; Huang, Q.; Alamdar, A.; Tian, M.; Shen, H. Newborn meconium and urinary metabolome response to maternal gestational diabetes mellitus: A preliminary case-control study. J. Proteome Res. 2015, 14, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
Assessed Metabolism | Ref | Type of Study | Biological Sample | GDM Criteria | Sample Collection Time | Metabolic Platform | Altered Metabolites in GDM |
---|---|---|---|---|---|---|---|
Carbohydrate, lipid, and amino acid metabolism | Mokkala et al., 2020 [29] | Prospective study (100 patients with GDM vs. 252 women without GDM) | Plasma | IADPSG criteria | Before GDM diagnosis (late pregnancy) | NMR | Citrate (intermediate metabolite in the tricarboxylic acid cycle) levels were higher in females with GDM. All-sized VLDL particles, medium-sized HDL particles, and small-sized HDL particles were higher, while large HDL particles were decreased in females with GDM in early pregnancy. VLDL particles remained higher in females with GDM in the third trimester of pregnancy, while small HDL particles were decreased. There were increased levels of isoleucine, leucine, phenylalanine, and alanine in early pregnancy in females that developed GDM. |
Carbohydrate and lipid metabolism | Lai et al., 2020 [30] | Prospective cohort study (173 incident T2D cases and 485 non-T2D controls) | Plasma | Carpenter and Coustan criteria | From 6–9 weeks postpartum (baseline) up to 2 years (follow-up) | FIA–MS | There were increased hexose levels in patients with GDM that developed T2DM. Six diacyl-glycerolphospholipids were positively correlated with the transition from GDM to T2D at baseline and follow-up, while 11 acyl-alkyl-glycerolphospholipids were negatively correlated with T2D risk. |
Lipid and amino acid metabolism | Zhan et al., 2021 [31] | Case-control study (49 patients with GDM and 54 healthy pregnant women) | Serum | IADPSG criteria | After GDM diagnosis (24–27 or 28–36 weeks of gestation) | UHPLC–QTOFMS | Glycerophospholipids were the most altered compounds in females with GDM. Monoacylglycerol, dihydrobiopterin, and 13S-hydroxyoctadecadienoic acid were identified with strong discriminative power for GDM. There were increased levels of lysine-tyrosine and L-arginine. |
Carbohydrate metabolism | Shokry et al., 2019 [32] | Case-control study (45 mothers with GDM; 67 healthy, normal-weight mothers; and 50 healthy, overweight/obese mothers) | Plasma | National Diabetes Data Group criteria | At delivery | LC–MS/MS | Sum of hexoses (about 90–95% glucose and 5% other hexoses) was significantly higher in GDM. |
Hou et al., 2018 [33] | Nested case-control study (131 GDM cases and 138 controls) | Plasma | IADPSG criteria | Before GDM diagnosis (about 12 weeks of gestation) | UPLC–QTOFMS, UPLC–TQMS, GC–TOFMS | Enhanced gluconeogenesis was suggested by increased alanine, glutamic acid, and pyruvic acid. | |
Lipid metabolism | Raczkowska et al., 2021 [34] | Case-control study (discovery phase: 79 pregnant women (50 women diagnosed with GDM and 29 controls); validation cohort consisted of 163 pregnant women (95 women with GDM and 68 controls)) | Serum | IADPSG criteria | Total 92 females: before GDM diagnosis (8–14 weeks of gestation) Total 662 females: at GDM diagnosis (24–28 weeks of gestation) | GC–MS | A combination of α–hydroxybutyric acid, β–hydroxybutyric acid, and myristic acid was found to be highly specific and sensitive for the diagnosis of GDM manifested by altered glucose tolerance (i.e., GDM) or to select women at a risk of altered glucose tolerance (i.e., GDM in the first trimester). |
Liu et al., 2020 [35] | 1:1 Nested case-control study (486 pregnant females) | Plasma | IADPSG criteria | Before GDM diagnosis (9–11 weeks of gestation) | LC–MS/MS | Lysophosphatidylcholines (LPC, e.g., LPC15:0, LPC17:0, LPC18:0, and LPC18:1) were higher in females with GDM. | |
Odenkirk et al., 2020 [36] | Case-control study (45 women with GDM, 48 women with term pre-eclampsia, and 98 healthy control women) | Plasma | IADPSG criteria | At the time of labor and delivery (at the time of admission, after admission, and up to 24 h after delivery) | LC–IMS–MS | Lipids containing 12:0, 14:0 (including myristic acid), 15:0, 18:3, 22:4, or 24:1 fatty acyls were downregulated in females with GDM, while 20:0 and 22:6 fatty acyls were upregulated. | |
Liu et al., 2019 [37] | Case-control study (23 women with GDM and 22 females without GDM) | Serum | IADPSG criteria | 27–33 weeks of gestation | GC–MS/MS | Lysophosphatidylcholines, sphingomyelins, and ceramides were significantly increased in females with GDM and hyperlipidemia. | |
Li et al., 2019 [38] | Case-control study (30 GDM patients and 30 healthy pregnant women) | Serum | IADPSG criteria | GDM diagnosis (24–28 weeks of gestation) | LC–MS | Females with GDM presented increased levels of traumatic acid, pravastatin, 2S-hydroxybutanoic acid, D(-)-beta-hydroxy butyric acid, 4-hydroxy-butyric acid, oleic acid, rumenic acid, linoleic acid, corticosterone, 11-deoxycortisol, tetrahydrocortisol, 2-hydroxyestrone, dehydroepiandrosterone sulfate, and tetrahydrocorticosterone. | |
Rahman et al., 2018 [39] | Prospective study (107 GDM and 214 non-GDM women) | Plasma | Carpenter and Coustan criteria | Before GDM diagnosis (8–13 and 16–22 weeks of gestation), at diagnosis, and after diagnosis of GDM (24–29 and 34–37 weeks of gestation) | GC–MS | Mid-to-long carbon chain glycerolipids were associated with GDM. | |
Amino acid metabolism | Jiang et al., 2020 [40] | Case-control study (431 women, of whom 65 developed GDM) | Serum | IADPSG criteria | Before GDM diagnosis (<12–16 weeks of gestation) | UHPLCMS/MS | Glutamate, alanine, phenylalaine, tyrosine, and isoleucine were increased in GDM. |
Sakurai et al., 2019 [41] | Case-control study (121 GDM and 121 non-GDM women) | Plasma and urine | Two-step strategy | Before GDM diagnosis (<16–19 weeks of gestation) | HILICMS/MS | In serum, glutamine, pyrophosphate, and octulose-1,8-bisphosphate significantly differed between females with DM and the ones with normal glucose tolerance. In urine, significant differences were found for shikimate-3-phosphate, ethanolamine, 1,3-diphosphoglycerate, and N-acetyl-L-alanine. | |
O’Neill, et al., 2018 [42] | Nested case-control study (20 females with GDM) | Amniotic fluid | Females with GDM confirmed prior to the study enrolment | Second trimester | GC–MS | Glycine, lysine, glutamine, histidine, tryptophan, phenylalanine, and arginine were altered in the amniotic fluid samples from females with GDM. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladu, I.M.; Clenciu, D.; Mitrea, A.; Amzolini, A.; Micu, S.E.; Crisan, A.E.; Efrem, I.C.; Fortofoiu, M.; Fortofoiu, M.C.; Mita, A.; et al. Maternal and Fetal Metabolites in Gestational Diabetes Mellitus: A Narrative Review. Metabolites 2022, 12, 383. https://doi.org/10.3390/metabo12050383
Vladu IM, Clenciu D, Mitrea A, Amzolini A, Micu SE, Crisan AE, Efrem IC, Fortofoiu M, Fortofoiu MC, Mita A, et al. Maternal and Fetal Metabolites in Gestational Diabetes Mellitus: A Narrative Review. Metabolites. 2022; 12(5):383. https://doi.org/10.3390/metabo12050383
Chicago/Turabian StyleVladu, Ionela Mihaela, Diana Clenciu, Adina Mitrea, Anca Amzolini, Simona Elena Micu, Anda Elena Crisan, Ion Cristian Efrem, Maria Fortofoiu, Mircea Catalin Fortofoiu, Adrian Mita, and et al. 2022. "Maternal and Fetal Metabolites in Gestational Diabetes Mellitus: A Narrative Review" Metabolites 12, no. 5: 383. https://doi.org/10.3390/metabo12050383
APA StyleVladu, I. M., Clenciu, D., Mitrea, A., Amzolini, A., Micu, S. E., Crisan, A. E., Efrem, I. C., Fortofoiu, M., Fortofoiu, M. C., Mita, A., Barau Alhija, A., Glodeanu, A. D., & Mota, M. (2022). Maternal and Fetal Metabolites in Gestational Diabetes Mellitus: A Narrative Review. Metabolites, 12(5), 383. https://doi.org/10.3390/metabo12050383