Using Mendelian Randomisation to Prioritise Candidate Maternal Metabolic Traits Influencing Offspring Birthweight
Abstract
:1. Introduction
2. Results
2.1. Univariable MR
2.2. Multivariable MR
2.3. Other Mendelian Randomisation Methods
3. Discussion
4. Materials and Methods
4.1. Overview
4.2. Data Sources
4.2.1. Genetic Association Data for Metabolic Traits
4.2.2. Genetic Association Data for Offspring Birthweight
4.3. Primary Exclusion Criteria for Metabolic Traits to Go into UVMR Analyses
4.4. Statistical Analyses
4.5. Univariable MR
4.6. Multivariable MR
4.7. Other Mendelian Randomisation Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Early Growth Genetics Consortium (EGG) and UK Biobank Offspring Birthweight GWAS
References
- Ray, J.G.; Park, A.L.; Fell, D.B. Mortality in Infants Affected by Preterm Birth and Severe Small-for-Gestational Age Birth Weight. Pediatrics 2017, 140, e20171881. [Google Scholar] [CrossRef] [PubMed]
- Weissmann-Brenner, A.; Simchen, M.; Zilberberg, E.; Kalter, A.; Weisz, B.; Achiron, R.; Dulitzky, M. Maternal and neonatal outcomes of large for gestational age pregnancies. Acta Obstet. Gynecol. Scand. 2012, 91, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.J.; Rogers, E.E.; Partridge, J.C.; Anderson, J.G.; Morris, M.; Kuppermann, M.; Franck, L.S.; Rand, L.; Jelliffe-Pawlowski, L.L. Population-based risks of mortality and preterm morbidity by gestational age and birth weight. J. Perinatol. 2016, 36, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Risnes, K.R.; Vatten, L.J.; Baker, J.; Jameson, K.; Sovio, U.; Kajantie, E.; Osler, M.; Morley, R.; Jokela, M.; Painter, R.C.; et al. Birthweight and mortality in adulthood: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 647–661. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-B.; Kinney, M.; Lawn, J.; the Born Too Soon Preterm Birth Action Group. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10 (Suppl. S1), S2. [Google Scholar] [CrossRef]
- Murray, E.; Fernandes, M.; Fazel, M.; Kennedy, S.; Villar, J.; Stein, A. Differential effect of intrauterine growth restriction on childhood neurodevelopment: A systematic review. BJOG 2015, 122, 1062–1072. [Google Scholar] [CrossRef]
- Iliodromiti, S.; Mackay, D.F.; Smith, G.C.; Pell, J.P.; Sattar, N.; Lawlor, D.A.; Nelson, S.M. Customised and Noncustomised Birth Weight Centiles and Prediction of Stillbirth and Infant Mortality and Morbidity: A Cohort Study of 979,912 Term Singleton Pregnancies in Scotland. PLoS Med. 2017, 14, e1002228. [Google Scholar] [CrossRef]
- Wang, S.F.; Shu, L.; Sheng, J.; Mu, M.; Wang, S.; Tao, X.Y.; Xu, S.J.; Tao, F.B. Birth weight and risk of coronary heart disease in adults: A meta-analysis of prospective cohort studies. J. Dev. Orig. Health Dis. 2014, 5, 408–419. [Google Scholar] [CrossRef]
- Yang, S.; Lynch, J.; Susser, E.S.; Lawlor, D.A. Birth weight and cognitive ability in childhood among siblings and nonsiblings. Pediatrics 2008, 122, e350–e358. [Google Scholar] [CrossRef]
- Handelman, S.; Romero, R.; Tarca, A.L.; Pacora, P.; Ingram, B.; Maymon, E.; Chaiworapongsa, T.; Hassan, S.S.; Erez, O. The plasma metabolome of women in early pregnancy differs from that of non-pregnant women. PLoS ONE 2019, 14, e0224682. [Google Scholar] [CrossRef]
- Luan, H.; Meng, N.; Liu, P.; Feng, Q.; Lin, S.; Fu, J.; Davidson, R.; Chen, X.; Rao, W.; Chen, F.; et al. Pregnancy-Induced Metabolic Phenotype Variations in Maternal Plasma. J. Proteome Res. 2014, 13, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Würtz, P.; Auro, K.; Mäkinen, V.-P.; Kangas, A.J.; Soininen, P.; Tiainen, M.; Tynkkynen, T.; Jokelainen, J.; Santalahti, J.; et al. Metabolic profiling of pregnancy: Cross-sectional and longitudinal evidence. BMC Med. 2016, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W., Jr. Placental-fetal glucose exchange and fetal glucose metabolism. Trans. Am. Clin. Climatol. Assoc. 2006, 117, 321–340. [Google Scholar] [PubMed]
- Jansson, T.; Ylvén, K.; Wennergren, M.; Powell, T.L. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 2002, 23, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Scholl, T.O.; Sowers, M.; Chen, X.; Lenders, C. Maternal Glucose Concentration Influences Fetal Growth, Gestation, and Pregnancy Complications. Am. J. Epidemiol. 2001, 154, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L. The role of insulin in fetal growth. Early Hum. Dev. 1992, 29, 177–181. [Google Scholar] [CrossRef]
- Herrera, E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur. J. Clin. Nutr. 2000, 54 (Suppl. S1), S47–S51. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr. Pharm. Biotechnol. 2014, 15, 24–31. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Kumaran, K.; Rao, S.R.; Chougule, S.D.; Deokar, T.M.; Bhalerao, A.B.; Solat, V.A.; Bhat, D.S.; Fall, C.H.; Yajnik, C.S.; et al. Maternal lipids are as important as glucose for fetal growth: Findings from the Pune Maternal Nutrition Study. Diabetes Care 2013, 36, 2706–2713. [Google Scholar] [CrossRef]
- Di Cianni, G.; Miccoli, R.; Volpe, L.; Lencioni, C.; Ghio, A.; Giovannitti, M.G.; Cuccuru, I.; Pellegrini, G.; Chatzianagnostou, K.; Boldrini, A.; et al. Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet. Med. 2005, 22, 21–25. [Google Scholar] [CrossRef]
- Chia, A.-R.; de Seymour, J.; Wong, G.; Sulek, K.; Han, T.-L.; McKenzie, E.J.; Aris, I.; Godfrey, K.M.; Yap, F.; Tan, K.H.; et al. Maternal plasma metabolic markers of neonatal adiposity and associated maternal characteristics: The GUSTO study. Sci. Rep. 2020, 10, 9422. [Google Scholar] [CrossRef] [PubMed]
- McBride, N.; Yousefi, P.; White, S.L.; Poston, L.; Farrar, D.; Sattar, N.; Nelson, S.M.; Wright, J.; Mason, D.; Suderman, M.; et al. Do nuclear magnetic resonance (NMR)-based metabolomics improve the prediction of pregnancy-related disorders? Findings from a UK birth cohort with independent validation. BMC Med. 2020, 18, 366. [Google Scholar] [CrossRef] [PubMed]
- Sovio, U.; Goulding, N.; McBride, N.; Cook, E.; Gaccioli, F.; Charnock-Jones, D.S.; Lawlor, D.A.; Smith, G.C.S. A maternal serum metabolite ratio predicts fetal growth restriction at term. Nat. Med. 2020, 26, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Sandler, V.; Reisetter, A.C.; Bain, J.R.; Muehlbauer, M.J.; Nodzenski, M.; Stevens, R.D.; Ilkayeva, O.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia 2017, 60, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Kadakia, R.; the HAPO Study Cooperative Research Group; Nodzenski, M.; Talbot, O.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; O’Neal, S.K.; et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia 2019, 62, 473–484. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Relton, C.; Sattar, N.; Nelson, S.M. Maternal adiposity—A determinant of perinatal and offspring outcomes? Nat. Rev. Endocrinol. 2012, 8, 679–688. [Google Scholar] [CrossRef]
- Ciborowski, M.; Zbucka-Kretowska, M.; Bomba-Opon, D.; Wielgos, M.; Samaha, R.B.B.; Pierzynski, P.; Szmitkowski, M.; Wolczynski, S.; Lipinska, D.; Citko, A.; et al. Potential first trimester metabolomic biomarkers of abnormal birth weight in healthy pregnancies. Prenat. Diagn. 2014, 34, 870–877. [Google Scholar] [CrossRef]
- Smith, G.E.S. Mendelian Randomization: Genetic Variants as Instruments for Strengthening Causal Inference in Observational Studies. In National Research Council (US) Committee on Advances in Collecting and Utilizing Biological Indicators and Genetic Information in Social Science Surveys; Weinstein, M., Vaupel, J.W., Wachter, K.W., Eds.; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Smith, G.D.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef]
- Smith, G.D.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.C.; Timpson, N.; Smith, G.D. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef]
- Tyrrell, J.; Richmond, R.C.; Palmer, T.M.; Feenstra, B.; Rangarajan, J.; Metrustry, S.; Cavadino, A.; Paternoster, L.; Armstrong, L.L.; De Silva, N.M.G.; et al. Genetic Evidence for Causal Relationships between Maternal Obesity-Related Traits and Birth Weight. JAMA 2016, 315, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.D.; Lawlor, D.A.; Freathy, R.M.; Evans, D.M.; Warrington, N.M. Using a two-sample Mendelian randomization design to investigate a possible causal effect of maternal lipid concentrations on offspring birth weight. Int. J. Epidemiol. 2019, 48, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Stewart, I.D.; Baird, D.; Mason, D.; Wright, J.; Zheng, J.; Gaunt, T.R.; Evans, D.M.; Freathy, R.M.; Langenberg, C.; et al. Causal effects of maternal circulating amino acids on offspring birthweight: A Mendelian randomisation study. MedRxiv 2022. [Google Scholar] [CrossRef]
- Soininen, P.; Kangas Antti, J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Cardiovascular Epidemiology and Genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [Google Scholar] [CrossRef]
- Würtz, P.; Kangas, A.J.; Soininen, P.; Lawlor, D.A.; Smith, G.D.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on Omic Technologies. Am. J. Epidemiol. 2017, 186, 1084–1096. [Google Scholar] [CrossRef]
- McIntyre, K.R.; Vincent, K.M.M.; Hayward, C.E.; Li, X.; Sibley, C.P.; Desforges, M.; Greenwood, S.L.; Dilworth, M.R. Human placental uptake of glutamine and glutamate is reduced in fetal growth restriction. Sci. Rep. 2020, 10, 16197. [Google Scholar] [CrossRef]
- Cetin, I. Amino acid interconversions in the fetal-placental unit: The animal model and human studies in vivo. Pediatr. Res. 2001, 49, 148–154. [Google Scholar] [CrossRef]
- Regnault, T.R.; Friedman, J.E.; Wilkening, R.B.; Anthony, R.V.; Hay, W.W., Jr. Fetoplacental transport and utilization of amino acids in IUGR—A review. Placenta 2005, 26, S52–S62. [Google Scholar] [CrossRef]
- Battaglia, F.C. Glutamine and glutamate exchange between the fetal liver and the placenta. J. Nutr. 2000, 130 (Suppl. S4), 974S–977S. [Google Scholar] [CrossRef]
- Sanderson, E.; Spiller, W.; Bowden, J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat. Med. 2021, 40, 5434–5452. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef]
- Sadreev, I.I.; Elsworth, B.L.; Mitchell, R.E.; Paternoster, L.; Sanderson, E.; Davies, N.M.; Millard, L.A.C.; Smith, G.D.; Lawlor, D.A.; Gaunt, T.G.; et al. Navigating sample overlap, winner’s curse and weak instrument bias in Mendelian randomization studies using the UK Biobank. MedRxiv 2021. [Google Scholar] [CrossRef]
- Burgess, S.; Davies, N.M.; Thompson, S.G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 2016, 40, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Moen, G.-H.; Hwang, L.-D.; Lawlor, D.A.; Warrington, N.M. Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization. Int. J. Epidemiol. 2019, 48, 861–875. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Richmond, R.; Warrington, N.; McMahon, G.; Smith, G.D.; Bowden, J.; Evans, D.M. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them. Wellcome Open Res. 2017, 2, 11. [Google Scholar] [CrossRef]
- Sanderson, E.; Smith, G.D.; Windmeijer, F.; Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 2018, 48, 713–727. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Ala-Korpela, M.; Kangas, A.J.; Soininen, P. Quantitative high-throughput metabolomics: A new era in epidemiology and genetics. Genome Med. 2012, 4, 36. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Clayton, G.L.; Borges, M.C.; Lawlor, D.A. From menarche to menopause: The impact of reproductive factors on the metabolic profile of over 65,000 women. MedRxiv 2022. [Google Scholar] [CrossRef]
- Borges, M.C.; Haycock, P.; Zheng, J.; Hemani, G.; Holmes, M.V.; Smith, G.D.; Hingorani, A.D.; Lawlor, D.A. Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: Analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med. 2022; in press. [Google Scholar]
- Elsworth, B.; Ruth, M.; Raistrick, C.; Paternoster, L.; Hemani, G.; Gaunt, T. MRC IEU UK Biobank GWAS Pipeline, Version 2; Semantic Scholar; Univeristy of Bristol: Bristol, UK, 2019. [Google Scholar]
- Kettunen, J.; Demirkan, A.; Würtz, P.; Draisma, H.H.M.; Haller, T.; Rawal, R.; Vaarhorst, A.; Kangas, A.; Lyytikaeinen, L.-P.; Pirinen, M.; et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 2016, 7, 11122. [Google Scholar] [CrossRef] [PubMed]
- Warrington, N.M.; Beaumont, R.N.; Horikoshi, M.; Day, F.R.; Helgeland, Ø.; Laurin, C.; Bacelis, J.; Peng, S.; Hao, K.; Feenstra, B.; et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 2019, 51, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.; Warrington, N.; Cavadino, A.; Tyrrell, J.; Nodzenski, M.; Horikoshi, M.; Geller, F.; Myhre, R.; Richmond, R.; Paternoster, L.; et al. Genome-wide association study of offspring birth weight in 86,577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet. 2018, 27, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S.; Daniel, R.; Pearce, N. Outcome modelling strategies in epidemiology: Traditional methods and basic alternatives. Int. J. Epidemiol. 2016, 45, 565–575. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Davies, N.M.; Hemani, G.; Smith, G.D. Two-sample Mendelian randomization: Avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 2017, 45, 1717–1726. [Google Scholar] [CrossRef]
- Bowden, J.; Smith, G.D.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Bowden, J.; Smith, G.D.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Smith, G.D.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef]
- Elsworth, B.; Lyon, M.; Alexander, T.; Liu, Y.; Matthews, P.; Hallett, J.; Bates, P.; Palmer, T.; Haberland, V.; Smith, G.D.; et al. The MRC IEU OpenGWAS data infrastructure. BioRxiv 2020. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Mägi, R.; Morris, A.P. GWAMA: Software for genome-wide association meta-analysis. BMC Bioinform. 2010, 11, 288. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Conditional F-Statistics (UKBB-Selected SNPs, K = 84) | Conditional F-Statistics (Kettunen-Selected SNPs, K = 12) |
---|---|---|
Alanine | 20.292 | 21.723 |
3-Hydroxybutyrate | 12.986 | 10.823 |
Glutamine | 48.678 | 12.603 |
Glucose | 20.179 | 32.213 |
Isoleucine | 11.406 | 7.011 |
Pyruvate | 22.916 | 6.120 |
MR-Egger | Weighted Median | Weighted Mode | MR-Egger | Weighted Median | ||
---|---|---|---|---|---|---|
Metabolite | Effect Estimate (95% CI) | p | Effect Estimate (95% CI) | p | Effect Estimate (95% CI) | p |
Alanine | 0.003 (−0.255, 0.261) | 0.982 | 0.009 (−0.073, 0.091) | 0.837 | −0.051 (−0.139, 0.037) | 0.267 |
3-Hydroxybutyrate | 0.207 (−0.075, 0.489) | 0.171 | −0.058 (−0.164, 0.049) | 0.287 | −0.147 (−0.371, 0.077) | 0.217 |
Glutamine | 0.079 (−0.007, 0.165) | 0.079 | 0.037 (−0.004, 0.079) | 0.078 | 0.026 (−0.015, 0.067) | 0.220 |
Glucose | 0.279 (0.034, 0.524) | 0.037 | 0.379 (0.297, 0.461) | <0.001 | 0.374 (0.289, 0.458) | <0.001 |
Isoleucine | −0.179 (−0.545, 0.187) | 0.371 | −0.023 (−0.139, 0.093) | 0.697 | 0.042 (−0.137, 0.221) | 0.656 |
Pyruvate | −0.061 (−0.171, 0.049) | 0.294 | −0.048 (−0.115, 0.02) | 0.167 | −0.063 (−0.138, 0.012) | 0.118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barry, C.-J.S.; Lawlor, D.A.; Shapland, C.Y.; Sanderson, E.; Borges, M.C. Using Mendelian Randomisation to Prioritise Candidate Maternal Metabolic Traits Influencing Offspring Birthweight. Metabolites 2022, 12, 537. https://doi.org/10.3390/metabo12060537
Barry C-JS, Lawlor DA, Shapland CY, Sanderson E, Borges MC. Using Mendelian Randomisation to Prioritise Candidate Maternal Metabolic Traits Influencing Offspring Birthweight. Metabolites. 2022; 12(6):537. https://doi.org/10.3390/metabo12060537
Chicago/Turabian StyleBarry, Ciarrah-Jane Shannon, Deborah A. Lawlor, Chin Yang Shapland, Eleanor Sanderson, and Maria Carolina Borges. 2022. "Using Mendelian Randomisation to Prioritise Candidate Maternal Metabolic Traits Influencing Offspring Birthweight" Metabolites 12, no. 6: 537. https://doi.org/10.3390/metabo12060537
APA StyleBarry, C. -J. S., Lawlor, D. A., Shapland, C. Y., Sanderson, E., & Borges, M. C. (2022). Using Mendelian Randomisation to Prioritise Candidate Maternal Metabolic Traits Influencing Offspring Birthweight. Metabolites, 12(6), 537. https://doi.org/10.3390/metabo12060537