Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy
Abstract
:1. Introduction
2. Results
2.1. Clinical-Data Analysis
2.2. General Features of Untargeted-Lipidome Data
2.3. General Features of Untargeted-Lipidome Data
2.4. Genetic Analysis of Lipid Metabolism Uncovers Evidence of Pleiotropy
2.5. Assignment of Lipids to Lipidomic Features Mapped to the Human Genome
2.6. Metabolome-Wide Association Studies Identify Metabolites Associated with Clinical and Biochemical Phenotypes
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Chemicals
4.3. Sample Preparation
4.4. UPLC analysis
4.5. Mass Spectrometry
4.6. Untargeted Lipidomic Data Analysis
4.7. Metabolome-Genome Wide Association Studies (mGWAS)
4.8. Metabolome-Wide Association Studies (MWAS)
4.9. Assignment of Lipid Features
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akiyama, M. Multi-omics study for interpretation of genome-wide association study. J. Hum. Genet. 2021, 66, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Cookson, W.; Liang, L.; Abecasis, G.; Moffatt, M.; Lathrop, M. Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 2009, 10, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Raffler, J.; Kastenmüller, G. Biochemical insights from population studies with genetics and metabolomics. Arch. Biochem. Biophys. 2016, 589, 168–176. [Google Scholar] [CrossRef]
- Meikle, P.J.; Christopher, M.J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr. Opin. Lipidol. 2011, 22, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; He, C.; Afshinnia, F.; Michailidis, G.; Pennathur, S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat. Rev. Nephrol. 2022, 18, 38–55. [Google Scholar] [CrossRef]
- Xiao, C.; Rossignol, F.; Vaz, F.M.; Ferreira, C.R. Inherited disorders of complex lipid metabolism: A clinical review. J. Inherit. Metab. Dis. 2021, 44, 809–825. [Google Scholar] [CrossRef]
- Quehenberger, O.; Dennis, E.A. The human plasma lipidome. N. Engl. J. Med. 2011, 365, 1812–1823. [Google Scholar] [CrossRef]
- Meikle, T.G.; Huynh, K.; Giles, C.; Meikle, P.J. Clinical lipidomics: Realizing the potential of lipid profiling. J. Lipid Res. 2021, 62, 100127. [Google Scholar] [CrossRef]
- McGurk, K.A.; Keavney, B.D.; Nicolaou, A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis 2021, 327, 18–30. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Deng, Y.; Sun, L.; Lou, B.; Yuan, Z.; Wu, Y.; Zhou, B.; Liu, J.; She, J. Serum lipids profiling perturbances in patients with ischemic heart disease and ischemic cardiomyopathy. Lipids Health Dis. 2020, 19, 89. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [PubMed] [Green Version]
- Zhao, Y.Y.; Wu, S.P.; Liu, S.; Zhang, Y.; Lin, R.C. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem. Biol. Interact. 2014, 220, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Demirkan, A.; van Duijn, C.M.; Ugocsai, P.; Isaacs, A.; Pramstaller, P.P.; Liebisch, G.; Wilson, J.F.; Johansson, Å.; Rudan, I.; Aulchenko, Y.S.; et al. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genet. 2012, 8, e1002490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabassum, R.; Rämö, J.T.; Ripatti, P.; Koskela, J.T.; Kurki, M.; Karjalainen, J.; Palta, P.; Hassan, S.; Nunez-Fontarnau, J.; Kiiskinen, T.T.J.; et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat. Commun. 2019, 10, 4329. [Google Scholar] [CrossRef] [Green Version]
- Harshfield, E.L.; Fauman, E.B.; Stacey, D.; Paul, D.S.; Ziemek, D.; Ong, R.M.Y.; Danesh, J.; Butterworth, A.S.; Rasheed, A.; Sattar, T.; et al. Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci. BMC Med. 2021, 19, 232. [Google Scholar] [CrossRef]
- Kastenmüller, G.; Raffler, J.; Gieger, C.; Suhre, K. Genetics of human metabolism: An update. Hum. Mol. Genet. 2015, 24, R93–R101. [Google Scholar] [CrossRef] [Green Version]
- Hagenbeek, F.A.; Pool, R.; van Dongen, J.; Draisma, H.H.M.; Jan Hottenga, J.; Willemsen, G.; Abdellaoui, A.; Fedko, I.O.; den Braber, A.; Visser, P.J.; et al. Heritability estimates for 361 blood metabolites across 40 genome-wide association studies. Nat. Commun. 2020, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, R.; Ripatti, S. Integrating lipidomics and genomics: Emerging tools to understand cardiovascular diseases. Cell. Mol. Life Sci. 2021, 78, 2565–2584. [Google Scholar] [CrossRef]
- Mundra, P.A.; Shaw, J.E.; Meikle, P.J. Lipidomic analyses in epidemiology. Int. J. Epidemiol. 2016, 45, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Burla, B.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; Lin, M.K. MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018, 59, 2001–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotta, L.A.; Pietzner, M.; Stewart, I.D.; Wittemans, L.B.L.; Li, C.; Bonelli, R.; Raffler, J.; Biggs, E.K.; Oliver-Williams, C.; Auyeung, V.P.W.; et al. A cross-platform approach identifies genetic regulators of human metabolism and health. Nat. Genet. 2021, 53, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Gallois, A.; Mefford, J.; Ko, A.; Vaysse, A.; Julienne, H.; Ala-Korpela, M.; Laakso, M.; Zaitlen, N.; Pajukanta, P.; Aschard, H. A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat. Commun. 2019, 10, 4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes Silva, L.; Vangipurapu, J.; Kuulasmaa, T.; Laakso, M. An intronic variant in the GCKR gene is associated with multiple lipids. Sci. Rep. 2019, 9, 10240. [Google Scholar] [CrossRef] [Green Version]
- Buczynski, M.W.; Dumlao, D.S.; Dennis, E.A. Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid Res. 2009, 50, 1015–1038. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.Y.; Fauman, E.B.; Petersen, A.K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Xu, C.; Wang, L.; Liu, Y.; Owusu, D.; Bailey, B.A.; Lid, Y.; Wang, K. Genetic association analysis of polymorphisms in PSD3 gene with obesity, type 2 diabetes, and HDL cholesterol. Diabetes Res. Clin. Pract. 2017, 126, 105–114. [Google Scholar] [CrossRef]
- Mancina, R.M.; Sasidharan, K.; Lindblom, A.; Wei, Y.; Ciociola, E.; Jamialahmadi, O.; Pingitore, P.; Andréasson, A.; Pellegrini, G.; Baselli, G.; et al. PSD3 downregulation confers protection against fatty liver disease. Nat. Metab. 2022, 4, 60–75. [Google Scholar] [CrossRef]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [Green Version]
- Maloberti, A.; Bruno, R.M.; Facchetti, R.; Grassi, G.; Taddei, S.; Ghiadoni, L.; Giannattasio, C. The role of metabolic syndrome in blood pressure control and pulse wave velocity progression over a 3.5 years in treated hypertensive patients. Eur. J. Intern. Med. 2020, 76, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Hager, J.; Kamatani, Y.; Cazier, J.B.; Youhanna, S.; Ghassibe-Sabbagh, M.; Platt, D.E.; Abchee, A.B.; Romanos, J.; Khazen, G.; Othman, R.; et al. Genome-wide association study in a Lebanese cohort confirms PHACTR1 as a major determinant of coronary artery stenosis. PLoS ONE 2012, 7, e38663. [Google Scholar]
- Sarafian, M.H.; Gaudin, M.; Lewis, M.R.; Martin, F.P.; Holmes, E.; Nicholson, J.K.; Dumas, M.E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 2014, 86, 5766–5774. [Google Scholar] [CrossRef] [PubMed]
- Zalloua, P.; Kadar, H.; Hariri, E.; Abi Farraj, L.; Brial, F.; Hedjazi, L.; le Lay, A.; Colleu, A.; Dubus, J.; Touboul, D.; et al. Untargeted Mass Spectrometry Lipidomics identifies correlation between serum sphingomyelins and plasma cholesterol. Lipids Health Dis. 2019, 18, 38. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef]
- Dunn, W.B.; Wilson, I.D.; Nicholls, A.W.; Broadhurst, D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 2012, 4, 2249–2264. [Google Scholar] [CrossRef] [Green Version]
- Veselkov, K.A.; Vingara, L.K.; Masson, P.; Robinette, S.L.; Want, E.; Li, J.V.; Barton, R.H.; Boursier-Neyret, C.; Walther, B.; Ebbels, T.M.; et al. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal. Chem. 2011, 83, 5864–5872. [Google Scholar] [CrossRef]
- Howie, B.N.; Donnelly, P.; Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
All | Females | Males | ||||
---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | |
Age | 57.4 ± 0.7 (273) | 30–83 | 61.4 ± 0.9 (119) | 38–83 | 54.4 ± 0.9 (154) | 30–81 |
Body weight (kg) | 83.13 ± 0.99 (269) | 50–150 | 77.69 ± 1.44 (118) | 52–150 | 87.39 ± 1.26 (151) | 50–130 |
BMI (kg/m2) | 30.37 ± 0.33 (268) | 18.96–55.77 | 31.36 ± 0.56 (118) | 20.34–55.77 | 29.59 ± 0.37 (150) | 18.96–44.29 |
Glucose (mg/dL) | 107.95 ± 2.19 (219) | 60–299 | 111.41 ± 3.98 (98) | 62–299 | 105.14 ± 2.29 (121) | 60–255 |
Total cholesterol (mg/dL) | 187.89 ± 2.83 (266) | 71–357 | 196.35 ± 4.12 (114) | 71–345 | 181.55 ± 3.81 (152) | 76–357 |
HDL cholesterol (mg/dL) | 41.87 ± 0.80 (266) | 18–90 | 46.10 ± 1.22 (115) | 18–85 | 38.65 ± 0.98 (151) | 18–90 |
LDL cholesterol (mg/dL) | 113.90 ± 2.29 (261) | 24–254 | 117.21 ± 3.22 (115) | 34–240 | 111.29 ± 3.21 (146) | 24–254 |
Triglycerides (mg/dL) | 176.58 ± 7.03 (273) | 9–1215 | 167.87 ± 8.12 (119) | 9–580 | 183.30 ± 10.77 (154) | 9–1215 |
All | Males | Females | |
---|---|---|---|
Body mass index > 30 (kg/m2) | 132 (49%) | 66 (44%) | 66 (56%) |
HDL cholesterol < 40 (mg/dl) | 128 (48%) | 94 (62%) | 34 (30%) |
Fasting glycemia > 125 mg/dl | 36 (16%) | 16 (13%) | 20 (20%) |
Type 2 diabetes | 46 (17%) | 23 (15%) | 23 (19%) |
Hypertension | 147 (54%) | 73 (47%) | 74 (62%) |
Hyperlipidemia | 119 (44%) | 67 (44%) | 52 (44%) |
Family history of hypertension | 187 (69%) | 99 (64%) | 88 (74%) |
Family history of type 2 diabetes | 155 (57%) | 83 (54%) | 72 (61%) |
Positive-Ionization Mode | |||||
---|---|---|---|---|---|
m/z | RT | Genetic Control | Closest Marker | Closest Gene | Putative Lipid |
204.123 | 37.098 | Monogenic | rs6992234 (c8) | PSD3 | CAR 2:0 (C9H17NO4) |
277.216 | 67.495 | Polygenic | - | FA 18:4 (C18H28O2), ST 18:1;O2 (C18H28O2), FA 18:3;O (C18H30O3) | |
279.232 | 66.953 | Monogenic | rs7759479 (c6) | DST | FA 17:4 (C17H26O2) |
295.227 | 67.515 | Polygenic | - | FA 18:3;O (C18H30O3), FA 18:2;O2 (C18H32O4) | |
303.232 | 72.294 | Polygenic | - | FA 20:5 (C20H30O2), ST 20:2;O2 (C20H30O2), FA 20:4;O (C20H32O3) | |
305.247 | 74.887 | Polygenic | - | FA 20:4 (C20H32O2), ST 20:1;O2 (C20H32O2),FA 20:3;O (C20H34O3) | |
319.226 | 66.276 | Polygenic | - | FA 20:5;O (C20H30O3), FA 20:4;O2 (C20H32O4) | |
343.224 | 71.225 | Polygenic | - | FA 20:4;O (C20H32O3Na) | |
344.279 | 52.103 | Monogenic | rs6928180 (c6) | GRIK2 | CAR 12:0 (C19H37NO4), FA 19:2;O2 (C19H34O4), FOH 19:3;O3 (C19H34O4) |
356.388 | 76.354 | Polygenic | - | - | |
370.295 | 56.145 | Monogenic | rs6928180 (c6) | GRIK2 | CAR 14:1 (C21H39NO4), CAR 14:0;O (C21H41NO5), FA 21:3;O2 (C21H36O4) |
377.266 | 110.856 | Monogenic | rs1009439 (c6) | RCAN2 | FA 21:2;O2 (C21H38O4Na), MG 18:2 (C21H38O4Na) |
379.282 | 145.907 | Monogenic | rs1009439 (c6) | RCAN2 | FA 21:1;O2 (C21H40O4Na), MG 18:1 (C21H40O4Na), WE 21:1;O2 (C21H40O4Na) |
398.326 | 67.497 | Monogenic | rs6928180 (c6) | GRIK2 | - |
400.342 | 82.533 | Monogenic | rs6928180 (c6) | GRIK2 | CAR 16:0 (C23H45NO4), FA 23:2;O2 (C23H42O4) |
426.357 | 88.672 | Monogenic | rs6928180 (c6) | GRIK2 | CAR 18:1 (C25H47NO4), CAR 18:0;O (C25H49NO5) |
429.373 | 309.265 | Polygenic | - | ST 29:2;O2 (C29H48O2), ST 29:1;O3 (C29H50O3) | |
431.352 | 314.575 | Polygenic | - | ST 28:2;O3 (C28H46O3), ST 28:1;O4 (C28H48O4) | |
447.347 | 365.330 | Polygenic | - | ST 28:2;O4 (C28H46O4), ST 28:1;O5 (C28H48O5) | |
448.391 | 309.387 | Polygenic | - | - | |
469.365 | 309.438 | Polygenic | - | ST 29:1;O3 (C29H50O3Na) | |
518.324 | 63.675 | Polygenic | - | LPC 18:3 (C26H48NO7P), PC 18:1 (C26H50NO8P) | |
563.551 | 133.091 | Polygenic | - | - | |
568.340 | 67.238 | Monogenic | rs12997234 (c2) | DPP10 | LPC 22:6 (C30H50NO7P) |
590.321 | 67.252 | Monogenic | rs12997234 (c2) | DPP10 | LPC 22:6 (C30H50NO7PNa) |
612.556 | 808.044 | Monogenic | rs11855528 (c15) | CEMIP | DG 34:1 (C37H70O5), DG 35:2 (C37H70O5) |
646.031 | 58.383 | Polygenic | - | - | |
662.025 | 62.334 | Polygenic | - | - | |
712.645 | 897.105 | Monogenic | rs2002218 (c3) | IQSEC1 | TG 40:0 (C43H82O6) |
738.660 | 898.395 | Polygenic | - | TG 42:1 (C45H84O6) | |
756.553 | 408.519 | Polygenic | - | PC 34:3 (C42H78NO8P),PE 37:3 (C42H78NO8P), PS O-36:2 (C42H80NO9P), PA 39:4 (C42H75O8P) | |
758.560 | 408.446 | Polygenic | - | - | |
758.569 | 457.168 | Polygenic | - | PC 34:2 (C42H80NO8P), PC 37:2 (C42H80NO8P), PS O-36:1 (C42H82NO9P), PA 39:3 (C42H77O8P) | |
766.574 | 442.363 | Monogenic | rs13362253 (c5) | MSX2 | PC O-36:5 (C44H80NO7P), PC 36:3 (C44H82NO8P), PE 39:3 (C44H82NO8P) |
780.553 | 373.605 | Monogenic | rs2260930 (c20) | SEL1L2 | PC 36:5 (C44H78NO8P), PE 39:5 (C44H78NO8P), PC 36:4;O (C44H80NO9P), PS O-38:4 (C44H80NO9P), PA 41:6 (C44H75O8P) |
784.584 | 560.683 | Polygenic | - | PC 36:3 (C44H82NO8P), PE 39:3 (C44H82NO8P), PA 41:4 (C44H79O8P) | |
792.707 | 921.958 | Polygenic | - | TG 46:2 (C49H90O6) | |
864.764 | 887.193 | Polygenic | - | - | |
876.728 | 841.945 | Polygenic | - | - | |
886.749 | 911.605 | Polygenic | - | - | |
888.764 | 928.842 | Polygenic | - | - | |
890.771 | 929.103 | Polygenic | - | - | |
894.754 | 922.854 | Polygenic | - | TG 54:7 (C57H96O6) | |
912.764 | 912.510 | Polygenic | - | - | |
914.779 | 929.523 | Polygenic | - | - | |
922.785 | 939.142 | Monogenic | rs2292329 (c16) | NECAB2 | TG 56:7 (C59H100O6) |
932.864 | 1004.391 | Monogenic | rs11071737 (c15) | RAB8B | TG 56:2 (C59H110O6) |
946.785 | 930.853 | Polygenic | - | TG 58:9 (C61H100O6) | |
948.800 | 946.043 | Polygenic | - | TG 58:8 (C61H102O6) | |
Negative-Ionization Mode | |||||
187.006 | 36.489 | Polygenic | - | - | |
271.228 | 113.649 | Polygenic | - | FA 16:0;O (C16H32O3) | |
293.213 | 64.408 | Polygenic | - | FA 18:3;O (C18H30O3) | |
295.228 | 64.394 | Monogenic | rs7760515 (c6) | DST | FA 18:2;O (C18H32O3) |
303.233 | 129.783 | Polygenic | - | ST 20:1;O2 (C20H32O2) | |
311.223 | 64.059 | Polygenic | - | FA 18:2;O2 (C18H32O4), FA 17:2 (C17H30O2), WE 17:2 (C17H30O2), WE 16:2 (C16H28O2), FA 16:2 (C16H28O2) | |
317.212 | 62.651 | Monogenic | rs7193436 (c16) | MVD | FA 20:5;O (C20H30O3), ST 19:2;O (C19H28O) |
319.228 | 70.158 | Polygenic | - | FA 20:4;O (C20H32O3), ST 19:1;O (C19H30O) | |
321.243 | 71.306 | Polygenic | - | FA 20:3;O (C20H34O3), ST 19:0;O (C19H32O) | |
327.233 | 118.705 | Polygenic | - | FA 22:6 (C22H32O2) | |
343.228 | 65.947 | Polygenic | - | FA 22:6;O (C22H32O3), ST 22:3;O3 (C22H32O3), ST 20:3;O (C20H28O) | |
345.244 | 68.352 | Polygenic | - | ST 21:2;O (C21H32O), ST 20:2;O (C20H30O) | |
409.236 | 80.634 | Polygenic | - | LPA 16:0 (C19H39O7P) | |
433.236 | 68.781 | Polygenic | - | LPA 18:2 (C21H39O7P) | |
437.291 | 60.227 | Polygenic | - | ST 24:1;O4 (C24H40O4),FA 23:4;O2 (C23H38O4),FOH 23:5;O3 (C23H38O4),MG 20:4 (C23H38O4),ST 23:1;O4 (C23H38O4) | |
446.377 | 287.415 | Polygenic | - | NAE 24:0 (C26H53NO2), TG 55:5 (C58H102O6) | |
448.307 | 47.807 | Polygenic | - | ST 24:1;O4;G (C26H43NO5) | |
457.236 | 66.170 | Polygenic | - | ST 24:2;O6 (C24H38O6) | |
591.391 | 200.190 | Polygenic | - | ST 27:2;O;Hex (C33H54O6) | |
605.406 | 223.252 | Monogenic | rs1487842 (c11) | SYT9 | ST 27:2;O;Hex (C33H54O6) |
612.331 | 64.327 | Monogenic | rs12997234 (c2) | DPP10 | LPC 22:6 (C30H50NO7P),LPE 24:6 (C29H48NO7P) |
804.567 | 435.379 | Monogenic | rs2655474 (c9) | ELAVL2 | PC O-36:3 (C44H84NO7P) |
812.582 | 530.577 | Polygenic | - | PC O-36:4 (C44H82NO7P), PC O-35:4 (C43H80NO7P), PE O-38:4 (C43H80NO7P) | |
828.577 | 487.561 | Polygenic | - | - | |
828.577 | 514.160 | Polygenic | - | - |
Ionization Mode | m/z | RT | P | Adjusted P | Correlation | R Squared | Adjusted R Squared | Putative Lipid | |
---|---|---|---|---|---|---|---|---|---|
CMD | Negative | 317.059 | 48.745 | 6.19 × 10−9 | 6.09 × 10−6 | 0.105 | 0.125 | 0.115 | - |
Negative | 319.056 | 48.759 | 7.97 × 10−9 | 6.09 × 10−6 | 0.061 | 0.123 | 0.113 | - | |
Negative | 386.237 | 59.845 | 6.06 × 10−8 | 3.09 × 10−5 | 0.058 | 0.112 | 0.102 | NAT 18:2 (C20H37NO4S) | |
Negative | 466.308 | 161.781 | 8.74 × 10−7 | 2.74 × 10−4 | 0.059 | 0.102 | 0.092 | CAR 18:3 (C25H43NO4) | |
Negative | 465.305 | 162.010 | 1.02 × 10−6 | 2.74 × 10−4 | 0.053 | 0.103 | 0.093 | ST 27:1;O;S (C27H46O4S) | |
Negative | 497.122 | 48.707 | 1.07 × 10−6 | 2.74 × 10−4 | 0.133 | 0.093 | 0.083 | - | |
Negative | 231.021 | 48.730 | 7.22 × 10−6 | 0.002 | 0.015 | 0.080 | 0.070 | FA 7:4;O4 (C7H6O6) | |
Negative | 233.018 | 48.759 | 8.94 × 10−6 | 0.002 | 0.150 | 0.079 | 0.068 | - | |
Negative | 313.239 | 115.077 | 1.44 × 10−5 | 0.002 | 0.127 | 0.084 | 0.073 | - | |
Negative | 463.344 | 138.712 | 9.16 × 10−5 | 0.014 | 0.016 | 0.057 | 0.046 | ST 28:1;O5 (C28H48O5),ST 27:1;O3 (C27H46O3),ST 26:1;O3 (C26H44O3) | |
Negative | 551.359 | 180.907 | 2.40 × 10−4 | 0.033 | 0.140 | 0.071 | 0.061 | - | |
Negative | 591.391 | 200.190 | 2.85 × 10−4 | 0.036 | 0.127 | 0.056 | 0.046 | ST 27:2;O;He × (C33H54O6) | |
Negative | 592.394 | 200.009 | 3.79 × 10−4 | 0.043 | 0.124 | 0.055 | 0.045 | PE 25:0 (C30H60NO8P) | |
Negative | 607.386 | 200.303 | 3.91 × 10−4 | 0.043 | 0.114 | 0.047 | 0.036 | ST 27:1;O;GlcA (C33H54O7) | |
FH Hypertension | Negative | 695.511 | 336.990 | 7.62 × 10−6 | 0.012 | 0.029 | 0.093 | 0.083 | - |
Negative | 938.536 | 440.693 | 3.61 × 10−5 | 0.028 | 0.104 | 0.068 | 0.058 | - | |
BMI | Positive | 774.543 | 527.985 | 1.80 × 10−5 | 0.027 | 0.182 | 0.091 | 0.081 | - |
Positive | 833.588 | 430.188 | 5.81 × 10−5 | 0.037 | 0.174 | 0.070 | 0.060 | PG 40:4 (C46H83O10PLi) | |
Positive | 834.591 | 429.747 | 9.24 × 10−5 | 0.037 | 0.169 | 0.068 | 0.057 | Hex 2Cer 32:1;O2 (C44H83NO13) | |
Positive | 832.584 | 429.512 | 9.85 × 10−5 | 0.037 | 0.161 | 0.064 | 0.053 | PC 40:7 (C48H82NO8P), PS O-42:6 (C48H84NO9P) | |
Total Cholesterol | Positive | 758.569 | 457.168 | 1.26 × 10−6 | 0.002 | −0.012 | 0.085 | 0.075 | - |
Positive | 759.572 | 457.370 | 2.35 × 10−6 | 0.002 | 0.022 | 0.084 | 0.074 | CL 76:2 (C85H162O17P2) | |
HDL Cholesterol | Negative | 367.228 | 84.969 | 2.44 × 10−5 | 0.037 | 0.010 | 0.078 | 0.068 | ST 24:5;O3 (C24H32O3) |
Positive | 213.146 | 49.562 | 5.72 × 10−6 | 0.008 | 0.013 | 0.091 | 0.081 | FA 13:4 (C13H18O2Li),WE 13:4 (C13H18O2Li) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brial, F.; Hedjazi, L.; Sonomura, K.; Al Hageh, C.; Zalloua, P.; Matsuda, F.; Gauguier, D. Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy. Metabolites 2022, 12, 596. https://doi.org/10.3390/metabo12070596
Brial F, Hedjazi L, Sonomura K, Al Hageh C, Zalloua P, Matsuda F, Gauguier D. Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy. Metabolites. 2022; 12(7):596. https://doi.org/10.3390/metabo12070596
Chicago/Turabian StyleBrial, Francois, Lyamine Hedjazi, Kazuhiro Sonomura, Cynthia Al Hageh, Pierre Zalloua, Fumihiko Matsuda, and Dominique Gauguier. 2022. "Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy" Metabolites 12, no. 7: 596. https://doi.org/10.3390/metabo12070596
APA StyleBrial, F., Hedjazi, L., Sonomura, K., Al Hageh, C., Zalloua, P., Matsuda, F., & Gauguier, D. (2022). Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy. Metabolites, 12(7), 596. https://doi.org/10.3390/metabo12070596