Serum ANGPTL8 and ANGPTL3 as Predictors of Triglyceride Elevation in Adult Women
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Laboratory Measurements
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018, 15, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Langsted, A.; Madsen, C.M.; Nordestgaard, B.G. Contribution of remnant cholesterol to cardiovascular risk. J. Intern. Med. 2020, 288, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Castanier, O.; Pintó, X.; Subirana, I.; Amor, A.J.; Ros, E.; Hernáez, A.; Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Estruch, R.; et al. Remnant Cholesterol, not LDLCholesterol, Is Associated with Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 76, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Lawler, P.R.; Kotrri, G.; Koh, M.; Goodman, S.G.; Farkouh, M.E.; Lee, D.S.; Austin, P.C.; Udell, J.A.; Ko, D.T. Real-world risk of cardiovascular outcomes associated with hypertriglyceridaemia among individuals with atherosclerotic cardiovascular disease and potential eligibility for emerging therapies. Eur. Heart J. 2020, 41, 86–94. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Boren, J.; Aguilar-Salinas, C.A.; Maurizio Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies—A consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef]
- Sylvers-Davie, K.L.; Segura-Roman, A.; Salvi, A.M.; Schache, K.J.; Davies, B.S.J. Angiopoietin-like 3 inhibition of endothelial lipase is not modulated by angiopoietin-like 8. J. Lipid Res. 2021, 62, 100112. [Google Scholar] [CrossRef]
- Christopoulou, E.; Elisaf, M.; Filippatos, T. Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis and Diabetes. Dis. Markers 2019, 2019, 6578327. [Google Scholar] [CrossRef]
- Catalano-Iniesta, L.; Sánchez Robledo, V.; Iglesias-Osma, M.C.; Albiñana, A.G.; Carrero, S.; Blanco, E.J.; Carretero-Hernández, M. Evidences for Expression and Location of ANGPTL8 in Human Adipose Tissue. J. Clin. Med. 2020, 9, 512. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Guo, D.; Li, S.; Zeng, Y.; Liu, C.; Fu, R.; Huang, M.; Xie, W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin. Chim. Acta 2020, 503, 19–34. [Google Scholar] [CrossRef]
- Morelli, M.B.; Chavez, C.; Santulli, G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: Focus on lipid disorders. Expert Opin. Ther. Targets 2020, 24, 79–88. [Google Scholar] [CrossRef]
- Ruhanen, H.; Haridas, P.N.; Jauhiainen, M.; Olkkonen, M.V. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158791. [Google Scholar] [CrossRef] [PubMed]
- Torrens, J.I.; Sutton-Tyrrell, K.; Zhao, X.; Matthews, K.; Brockwell, S.; Sowers, M.; Santoro, N. Relative androgen excess during the menopausal transition predicts incident metabolic syndrome in midlife women: Study of Women’s Health across the Nation. Menopause 2009, 16, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Wang, X.; Goldberg, R.; Ross, R.; Jackson, L. Androgenic sex steroids contribute to metabolic risk beyond intra-abdominal fat in overweight/obese black and white women. Obesity 2013, 21, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Kim, H.S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef]
- Kim, H.M.; Park, J.; Ryu, S.Y.; Kim, J. The effect of menopause on the metabolic syndrome among Korean women: The Korean National Health and Nutrition Examination Survey, 2001. Diabetes Care 2007, 30, 701–706. [Google Scholar] [CrossRef]
- Williams, C.E. Lipid metabolism in women. Proc. Nutr. Soc. 2004, 63, 153–160. [Google Scholar] [CrossRef]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef]
- Anagnostis, P.; Lambrinoudaki, I.; Stevenson, J.C.; Goulis, D.G. Menopause-associated risk of cardiovascular Disease. Endocr. Connect. 2022, 11, e210537. [Google Scholar] [CrossRef]
- Yamada, H.; Kusaka, I.; Saikawa, R.; Hara, K.; Kakei, M.; Ishikawa, S. Relationship Between Angiopoietin-Like Protein 8 and Fasting Serum Triglyceride Level. J. Clin. Med. Res. 2018, 10, 134–136. [Google Scholar] [CrossRef]
- Morinaga, J.; Zhao, J.; Endo, M.; Kadomatsu, T.; Miyata, K.; Sugizaki, T.; Okadome, Y.; Tian, Z.; Horiguchi, H.; Miyashita, K.; et al. Association of circulating ANGPTL 3, 4, and 8 levels with medical status in a population undergoing routine medical checkups: A cross-sectional study. PLoS ONE 2018, 13, e0193731. [Google Scholar] [CrossRef]
- Murawska, K.; Krintus, M.; Kuligowska-Prusinska, M.; Szternel, Ł.; Stefanska, A.; Sypniewska, G. Relationship between Serum Angiopoietin-Like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity. Nutrients 2021, 13, 4339. [Google Scholar] [CrossRef] [PubMed]
- Haller, J.F.; Mintah, I.J.; Shihanian, L.M.; Stevis, P.; Buckler, D.; Alexa-Braun, C.A.; Kleiner, S.; Banfi, S.; Cohen, J.C.; Hobbs, H.H.; et al. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J. Lipid Res. 2017, 58, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Britt, E.C.; Shows, H.W.; Hjelmaas, A.J.; Shetty, S.K.; Cushing, E.M.; Li, W.; Dou, A.; Zhang, R.; Davies, B.S. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol. Metab. 2017, 6, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Pottanat, T.G.; Siegel, R.W.; Ehsani, M.; Qian, Y.W.; Zhen, E.Y.; Regmi, A.; Roell, W.C.; Guo, H.; Luo, M.J.; et al. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J. Lipid Res. 2020, 61, 1203–1220. [Google Scholar] [CrossRef]
- Liu, J.; Afroza, H.; Rader, D.J.; Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 2010, 285, 27561–27570. [Google Scholar] [CrossRef]
- Sonnenburg, W.K.; Yu, D.; Lee, E.C.; Xiong, W.; Gololobov, G.; Key, B.; Gay, J.; Wilganowski, N.; Hu, Y.; Zhao, S.; et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J. Lipid. Res. 2009, 50, 2421–2429. [Google Scholar] [CrossRef]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef]
- Kubacka, J.; Cembrowska, P.; Sypniewska, G.; Stefanska, A. The Association between Branched-Chain Amino Acids (BCAAs) and Cardiometabolic Risk Factors in Middle-Aged Caucasian Women Stratified According to Glycemic Status. Nutrients 2021, 13, 3307. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Peng, D. ANGPTL8: An Important Regulator in Metabolic Disorders. Front. Endocrinol. 2018, 9, 169. [Google Scholar] [CrossRef]
- Kaczmarek, M. The timing of natural menopause in Poland and associated factors. Maturitas 2007, 57, 139–153. [Google Scholar] [CrossRef]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.S.; Sluss, P.M.; De Villiers, T.J. Executive summary of the Stages of Reproductive Aging Workshop: Addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012, 4, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Krintus, M.; Kozinski, M.; Fabiszak, T.; Kuligowska-Prusinska, M.; Laskowska, E.; Lennartz, L.; Nowak-Los, L.; Kubica, J.; Sypniewska, G. Impact of lipid markers and high-sensitivity C-reactive protein on the value of the 99th percentile upper reference limit for high-sensitivity cardiac troponin I. Clin. Chim. Acta 2016, 462, 193–200. [Google Scholar] [CrossRef] [PubMed]
Variable | PRE ≤40 Years n = 31 (I) | PERI 41–51 Years n = 26 (II) | POST ≥52 Years n = 37 (III) | P I vs. II | P II vs. III | P I vs. III |
---|---|---|---|---|---|---|
Age [years] | 36 (30–38) | 46 (43–48) | 56 (54–61) | <0.001 | <0.001 | <0.001 |
BMI [kg/m2] | 24.4 (20.4–27.9) | 27.7 (23.8–31.7) | 25.2 (23.9–27.7) | 0.014 | 0.194 | 0.085 |
TC [mmol/L] | 4.91 (4.45–5.51) | 5.48 (4.60–6.15) | 6.21 (5.53–7.03) | 0.099 | 0.014 | <0.001 |
LDL-C [mmol/L] | 2.95 (2.27–3.75) | 3.14 (2.40–3.80) | 3.77 (3.28–4.65) | 0.548 | 0.011 | <0.001 |
apoB [µmol/L] | 1.71 (1.40–2.10) | 1.83 (1.50–2.32) | 2.16 (1.93–2.57) | 0.214 | 0.055 | <0.001 |
sdLDL-C [mmol/L] | 0.64 (0.36–0.87) | 0.97 (0.56–1.51) | 0.98 (0.69–1.41) | 0.011 | 0.839 | 0.001 |
TG [mmol/L] | 0.82 (0.68–1.75) | 1.99 (1.35–2.28) | 1.70 (1.06–2.29) | 0.001 | 0.485 | 0.001 |
HDL-C [mmol/L] | 1.55 (1.29–1.68) | 1.39 (1.19–1.58) | 1.47 (1.34–1.68) | 0.114 | 0.152 | 0.848 |
TG/HDL-C | 1.33 (0.98–2.67) | 3.26 (2.24–4.60) | 2.67 (1.77–3.79) | 0.002 | 0.201 | 0.005 |
Non-HDL-C [mmol/L] | 3.49 (2.69–4.06) | 4.28 (3.02–5.02) | 4.55 (3.98–5.59) | 0.058 | 0.051 | <0.001 |
Remnant-C [mmol/L] | 0.44 (0.31–0.54) | 0.77 (0.54–1.01) | 0.70 (0.52–0.88) | <0.001 | 0.539 | <0.001 |
ANGPTL3 [ng/mL] | 219 (178–245) | 255 (211–301) | 280 (208–335) | 0.017 | 0.339 | 0.002 |
ANGPTL8 [ng/mL] | 5.15 (3.10–7.71) | 7.23 (4.61–9.49) | 4.80 (3.97–9.48) | 0.042 | 0.217 | 0.395 |
CRP [nmol/L] | 7.33 (2.09–27.62) | 20.38 (6.95–39.52) | 7.81 (2.09–19.0) | 0.047 | 0.020 | 0.801 |
FSH [mIU/mL] | 5.0 (4.5–7.4) | 12.7 (6.9–40.4) | 57.9 (42.7–74.8) | 0.001 | 0.001 | <0.001 |
PRE n = 31 | ANGPTL8 | ANGPTL3 |
TG | R = 0.437; p = 0.014 | R = −0.099; p = 0.593 |
TG/HDL-C | R = 0.357; p = 0.048 | R = −0.173; p = 0.351 |
POST n = 37 | ANGPTL8 | ANGPTL3 |
TG | R = 0.451; p = 0.005 | R = 0.428; p = 0.008 |
TG/HDL-C | R = 0.494; p = 0.002 | R = 0.317; p = 0.055 |
sdLDL-C | R = 0.391; p = 0.017 | R = 0.394; p = 0.016 |
TC | R = 0.159; p = 0.345 | R = 0.398; p = 0.015 |
apoB | R = 0.243; p = 0.146 | R = 0.386; p = 0.018 |
Variable | Adjusted OR | 95% CI | p | p * | Non-Adjusted NR2 | Adjusted NR2 |
---|---|---|---|---|---|---|
TC | 1.032 | 1.018–1.048 | <0.001 | 0.001 | 0.30 | 0.42 |
LDL-C | 1.032 | 1.015–1.050 | <0.001 | 0.001 | 0.26 | 0.40 |
apoB | 1.083 | 1.046–1.121 | <0.001 | 0.001 | 0.46 | 0.57 |
sdLDL-C | 1.215 | 1.104–1.337 | <0.001 | 0.001 | 0.68 | 0.71 |
Remnant-C | 1.199 | 1.107–1.299 | <0.001 | 0.001 | 0.52 | 0.55 |
ANGPTL3 | 1.013 | 1.005–1.021 | 0.02 | 0.02 | 0.13 | 0.27 |
ANGPTL8 | 1.464 | 1.191–1.801 | <0.001 | 0.001 | 0.31 | 0.44 |
R2 = 0.28; p < 0.0001 n = 94 | ||||
---|---|---|---|---|
Variables | β | S.E. | p | p * |
Age categories | 0.263 | 0.097 | 0.008 | 0.013 |
CRP | −0.278 | 0.095 | 0.004 | 0.01 |
TG | 0.541 | 0.154 | <0.001 | 0.005 |
ANGPTL8 | −0.225 | 0.110 | 0.040 | 0.05 |
Remnant-C | −0.206 | 0.139 | 0.143 | 0.143 |
R2 = 0.36; p < 0.0001 n = 94 | ||||
---|---|---|---|---|
Variables | β | S.E. | p | p * |
TG | 0.704 | 0.108 | <0.001 | 0.003 |
ANGPTL3 | −0.219 | 0.088 | 0.015 | 0.022 |
sdLDL-C | −0.165 | 0.104 | 0.117 | 0.117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanska, A.; Bergmann, K.; Krintus, M.; Kuligowska-Prusinska, M.; Murawska, K.; Sypniewska, G. Serum ANGPTL8 and ANGPTL3 as Predictors of Triglyceride Elevation in Adult Women. Metabolites 2022, 12, 539. https://doi.org/10.3390/metabo12060539
Stefanska A, Bergmann K, Krintus M, Kuligowska-Prusinska M, Murawska K, Sypniewska G. Serum ANGPTL8 and ANGPTL3 as Predictors of Triglyceride Elevation in Adult Women. Metabolites. 2022; 12(6):539. https://doi.org/10.3390/metabo12060539
Chicago/Turabian StyleStefanska, Anna, Katarzyna Bergmann, Magdalena Krintus, Magdalena Kuligowska-Prusinska, Karolina Murawska, and Grazyna Sypniewska. 2022. "Serum ANGPTL8 and ANGPTL3 as Predictors of Triglyceride Elevation in Adult Women" Metabolites 12, no. 6: 539. https://doi.org/10.3390/metabo12060539
APA StyleStefanska, A., Bergmann, K., Krintus, M., Kuligowska-Prusinska, M., Murawska, K., & Sypniewska, G. (2022). Serum ANGPTL8 and ANGPTL3 as Predictors of Triglyceride Elevation in Adult Women. Metabolites, 12(6), 539. https://doi.org/10.3390/metabo12060539