Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs
Abstract
:1. Introduction
2. Results
2.1. Replacment of Carbohydrate in Canine Foods with Protein versus Fat and Impact on Food Macronutrients
2.2. Dietary Energy in Relation to Body Weights and Macronutrient Intakes
2.3. Serum Clinical Analyses Reveal That Fat Rather Than Protein Replacement of Carbohydrate Increases Ketogenicity of a Low Carbohydrate Food
2.4. LoCHO Foods Decrease Serum Amino Acid and Kynurenine Metabolites
2.5. Increased Intake of Fatty Acids Leads to Decreases in those Fatty Acids and Desaturase Activity as Well as Increased Elongase Activity
2.6. Increased Postabsorptive Apparent Circulating Total Energy Availability with Replacement of Dietary Carbohydrate with Fat, but Not Protein
2.7. Differential Impact of Fat versus Protein Replacement of Carbohydrate on Serum Fatty Acid Energetic Intermediates
2.8. Impact of Carbohydrate Replacement by Fat or Protein on Circulating Levels of Phospholipids and Sphingolipids
2.9. Differential Impact of Carbohydrate Replacement by Fat or Protein on Circulating Levels of Lipid-Derived Neurotransmitters
2.10. Similar Impact of Carbohydrate Replacement by Fat or Protein on Circulating Primary and Secondary Bile Acids
3. Discussion
3.1. Protein versus Fat Replacement of Carbohydrate Determines Nutritional Ketosis, Dietary Energy Required to Maintain Body Weight and Available Circulating Energy
3.2. Maconutrient-Induced Partitioning of Dietary versus Body Protein towards Amino Acid Gluconeogenesis and Albumin Accretion
3.3. Partitioning of Dietary Fat into Fasting Ciculating Lipid Fractions: Energetic Products versus Structural and Signalling Lipids
3.4. Unique Effect of High Fat, Low Carbohydrate Food to Decrease Indicators of Fatty Acid Desaturase Activity
3.5. Consolidated Results Indicate Potential for Improved Nutritional Support for Cancer When Fat, Rather Than Protein, Replaces Carbohydrate
4. Methods
4.1. Study Foods and Analyses
4.2. Animals and Experimental Design
4.3. Sample Collection and Analyses
4.4. Statistical Analysis
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Toor, A.J.; van der Linde-Sipman, J.S.; van den Ingh, T.S.; Wensing, T.; Mol, J.A. Experimental induction of fasting hypoglycaemia and fatty liver syndrome in three Yorkshire terrier pups. Vet. Q. 1991, 13, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.C. The nutritional requirements of exercising dogs. J. Nutr. 1998, 128, 2686s–2690s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masino, S.A.; Freedgood, N.R.; Reichert, H.R.; Director, C.J.; Whittemore, V.H.; Zupec-Kania, B. Dietary intervention for canine epilepsy: Two case reports. Epilepsia Open 2019, 4, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.A. Glucose homeostasis during canine pregnancy: Insulin resistance, ketosis, and hypoglycemia. Theriogenology 2008, 70, 1418–1423. [Google Scholar] [CrossRef]
- Balogh, O.; Bruckmaier, R.; Keller, S.; Reichler, I.M. Effect of maternal metabolism on fetal supply: Glucose, non-esterified fatty acids and beta-hydroxybutyrate concentrations in canine maternal serum and fetal fluids at term pregnancy. Anim. Reprod. Sci. 2018, 193, 209–216. [Google Scholar] [CrossRef]
- Romsos, D.R.; Palmer, H.J.; Muiruri, K.L.; Bennink, M.R. Influence of a low carbohydrate diet on performance of pregnant and lactating dogs. J. Nutr. 1981, 111, 678–689. [Google Scholar] [CrossRef]
- Resnick, S. Effect of age on survivability of pups eating a carbohydrate-free diet. J. Am. Vet. Med. Assoc. 1978, 172, 145–148. [Google Scholar]
- Axelsson, E.; Ratnakumar, A.; Arendt, M.L.; Maqbool, K.; Webster, M.T.; Perloski, M.; Liberg, O.; Arnemo, J.M.; Hedhammar, A.; Lindblad-Toh, K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013, 495, 360–364. [Google Scholar] [CrossRef]
- Pajic, P.; Pavlidis, P.; Dean, K.; Neznanova, L.; Romano, R.A.; Garneau, D.; Daugherity, E.; Globig, A.; Ruhl, S.; Gokcumen, O. Independent amylase gene copy number bursts correlate with dietary preferences in mammals. Elife 2019, 8. [Google Scholar] [CrossRef]
- Wang, G.D.; Zhai, W.; Yang, H.C.; Fan, R.X.; Cao, X.; Zhong, L.; Wang, L.; Liu, F.; Wu, H.; Cheng, L.G.; et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 2013, 4, 1860. [Google Scholar] [CrossRef] [Green Version]
- Reiter, T.; Jagoda, E.; Capellini, T.D. Dietary variation and evolution of gene copy number among dog breeds. PLoS ONE 2016, 11, e0148899. [Google Scholar] [CrossRef]
- Briens, J.M.; Subramaniam, M.; Kilgour, A.; Loewen, M.E.; Desai, K.M.; Adolphe, J.L.; Zatti, K.M.; Drew, M.D.; Weber, L.P. Glycemic, insulinemic and methylglyoxal postprandial responses to starches alone or in whole diets in dogs versus cats: Relating the concept of glycemic index to metabolic responses and gene expression. Comp. BioChem. Physiol. A Mol. Integr. Physiol. 2021, 257, 110973. [Google Scholar] [CrossRef]
- Larmas, M.; Mäkinen, K.K.; Scheinin, A. Studies on dog saliva. IV. The effect of carbohydrate diet on the activity of some hydrolytic enzymes. Acta Odontol Scand. 1972, 30, 629–641. [Google Scholar] [CrossRef]
- Mañas, M.; Yago, M.D.; Quiles, J.L.; Huertas, J.R.; Martinez-Victoria, E. Absence of rapid adaptation of the exocrine pancreas of conscious dogs to diets enriched in fat or carbohydrates. Arch. Physiol. BioChem. 1996, 104, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Behrman, H.R.; Kare, M.R. Adaptation of canine pancreatic enzymes to diet composition. J. Physiol. 1969, 205, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Mizumoto, A.; Rerknimitr, R.; Sarr, M.G.; DiMango, E.P. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs. Gastroenterology 1999, 116, 431–437. [Google Scholar] [CrossRef]
- Gershuni, V.M.; Yan, S.L.; Medici, V. Nutritional ketosis for weight management and reversal of metabolic syndrome. Curr. Nutr. Rep. 2018, 7, 97–106. [Google Scholar] [CrossRef]
- Hume, D.Z.; Drobatz, K.J.; Hess, R.S. Outcome of dogs with diabetic ketoacidosis: 127 dogs (1993-2003). J. Vet. Intern. Med. 2006, 20, 547–555. [Google Scholar] [CrossRef]
- Wallenius, K.; Kroon, T.; Hagstedt, T.; Löfgren, L.; Sörhede-Winzell, M.; Boucher, J.; Lindén, D.; Oakes, N.D. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis. J. Lipid Res. 2022, 63, 100176. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Signal. Transduct Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef]
- Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: A systematic review and meta-analysis. Nutr. Diabetes 2020, 10, 38. [Google Scholar] [CrossRef]
- Zhou, Z.; Hagopian, K.; López-Domínguez, J.A.; Kim, K.; Jasoliya, M.; Roberts, M.N.; Cortopassi, G.A.; Showalter, M.R.; Roberts, B.S.; González-Reyes, J.A.; et al. A ketogenic diet impacts markers of mitochondrial mass in a tissue specific manner in aged mice. Aging (Albany NY) 2021, 13, 7914–7930. [Google Scholar] [CrossRef]
- Kronfeld, D.S. Diet and the performance of racing sled dogs. J. Am. Vet. Med. Assoc. 1973, 162, 470–473. [Google Scholar]
- Gal, A.; Cuttance, W.; Cave, N.; Lopez-Villalobos, N.; Herndon, A.; Giles, J.; Burchell, R. Less is more? Ultra-low carbohydrate diet and working dogs’ performance. PLoS ONE 2021, 16, e0261506. [Google Scholar] [CrossRef]
- Crandall, L.A., Jr. A comparison of ketosis in man and dog. J. Biol. Chem.. 1941, 138, 123–128. [Google Scholar] [CrossRef]
- Wiener, R.; Hirsch, H.J.; Spitzer, J.J. Cerebral extraction of ketones and their penetration into CSF in the dog. Am. J. Physiol. 1971, 220, 1542–1546. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Heineman, F.W.; Balaban, R.S. Effects of beta-hydroxybutyrate on oxidative metabolism and phosphorylation potential in canine heart in vivo. Am. J. Physiol. 1991, 260, H1767–H1773. [Google Scholar] [CrossRef]
- Visscher, F.E. Renal clearance of beta-hydroxybutyric acid in a dog. Proc. Soc. Exp. Biol. Med. 1945, 60, 296. [Google Scholar] [CrossRef]
- Drenick, E.J.; Alvarez, L.C.; Tamasi, G.C.; Brickman, A.S. Resistance to symptomatic insulin reactions after fasting. J. Clin. Invest. 1972, 51, 2757–2762. [Google Scholar] [CrossRef]
- Flatt, J.P.; Blackburn, G.L.; Randers, G.; Stanbury, J.B. Effects of ketone body infusion on hypoglycemic reaction in postabsorptive dogs. Metabolism 1974, 23, 151–158. [Google Scholar] [CrossRef]
- Ciraolo, S.T.; Previs, S.F.; Fernandez, C.A.; Agarwal, K.C.; David, F.; Koshy, J.; Lucas, D.; Tammaro, A.; Stevens, M.P.; Tserng, K.Y.; et al. Model of extreme hypoglycemia in dogs made ketotic with (R,S)-1,3-butanediol acetoacetate esters. Am. J. Physiol. 1995, 269, E67–E75. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.B.; Cave, N.J.; Heiser, A.; Edwards, P.J.B.; Godfrey, A.J.R.; Wester, T. Metabolic and immunological effects of intermittent fasting on a ketogenic diet containing medium-chain triglycerides in healthy dogs. Front. Vet. Sci. 2019, 6, 480. [Google Scholar] [CrossRef] [PubMed]
- de Bruijne, J.J.; Altszuler, N.; Hampshire, J.; Visser, T.J.; Hackeng, W.H. Fat mobilization and plasma hormone levels in fasted dogs. Metabolism 1981, 30, 190–194. [Google Scholar] [CrossRef]
- Paul, P.; Issekutz, B., Jr. Role of extramuscular energy sources in the metabolism of the exercising dog. J. Appl. Physiol. 1967, 22, 615–622. [Google Scholar] [CrossRef]
- Kilburn, L.R.; Allenspach, K.; Jergens, A.E.; Bourgois-Mochel, A.; Mochel, J.P.; Serao, M.C.R. Apparent total tract digestibility, fecal characteristics, and blood parameters of healthy adult dogs fed high-fat diets. J. Anim. Sci. 2020, 98. [Google Scholar] [CrossRef]
- Ober, J.; Gillette, R.L.; Angle, T.C.; Haney, P.; Fletcher, D.J.; Wakshlag, J.J. The effects of varying concentrations of dietary protein and fat on blood gas, hematologic serum Chem. istry, and body temperature before and after exercise in labrador retrievers. Front. Vet. Sci. 2016, 3, 59. [Google Scholar] [CrossRef] [Green Version]
- Law, T.H.; Davies, E.S.; Pan, Y.; Zanghi, B.; Want, E.; Volk, H.A. A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy. Br. J. Nutr. 2015, 114, 1438–1447. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.M.; Wang, H.S. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomed. J. 2013, 36, 9–15. [Google Scholar] [CrossRef]
- Vandenberghe, C.; St-Pierre, V.; Fortier, M.; Castellano, C.A.; Cuenoud, B.; Cunnane, S.C. Medium chain triglycerides modulate the ketogenic effect of a metabolic switch. Front. Nutr. 2020, 7, 3. [Google Scholar] [CrossRef]
- Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53, 124–144. [Google Scholar] [CrossRef]
- Misto, A.; Provensi, G.; Vozella, V.; Passani, M.B.; Piomelli, D. Mast cell-derived histamine regulates liver ketogenesis via oleoylethanolamide signaling. Cell Metab. 2019, 29, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, M.; Fernández-Ruiz, J.J.; Sánchez, C.; Velasco, G.; Ramos, J.A. Effects of anandamide on hepatic fatty acid metabolism. BioChem.. Pharmacol. 1995, 50, 885–888. [Google Scholar] [CrossRef]
- Jackson, M.I.; Jewell, D.E. Docosahexaenoate-enriched fish oil and medium chain triglycerides shape the feline plasma lipidome and synergistically decrease circulating gut microbiome-derived putrefactive postbiotics. PLoS ONE 2020, 15, e0229868. [Google Scholar] [CrossRef]
- Dupuis, N.; Curatolo, N.; Benoist, J.F.; Auvin, S. Ketogenic diet exhibits anti-inflammatory properties. Epilepsia 2015, 56, e95–e98. [Google Scholar] [CrossRef]
- Patterson, E.E.; Munana, K.R.; Kirk, C.A.; Lowry, S.R.; Armstrong, P.J. Results of a ketogenic food trial for dogs with idiopathic epilepsy. J. Vet. Intern. Med. 2005, 19, 421. [Google Scholar]
- Freyse, E.J.; Rebrin, K.; Schneider, T.; Petrzika, M.; Fischer, U. Increased urea synthesis in insulin-dependent diabetic dogs maintained normoglycemic: Effect of portal insulin administration and food protein content. Diabetes 1996, 45, 667–674. [Google Scholar] [CrossRef]
- Jones, L.M.; Legge, M. Plasma fatty acids as markers for desaturase and elongase activities in spinal cord injured males. J. Spinal. Cord. Med. 2019, 42, 163–170. [Google Scholar] [CrossRef]
- Zilberter, T.; Zilberter, Y. Ketogenic ratio determines metabolic effects of macronutrients and prevents interpretive bias. Front. Nutr. 2018, 5, 75. [Google Scholar] [CrossRef]
- Bates, M.W. Turnover rates of fatty acids of plasma triglyceride, cholesterol ester and phospholipid in the postabsorptive dog. Am. J. Physiol. 1958, 194, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Ebbeling, C.B.; Bielak, L.; Lakin, P.R.; Klein, G.L.; Wong, J.M.W.; Luoto, P.K.; Wong, W.W.; Ludwig, D.S. Energy requirement is higher during weight-loss maintenance in adults consuming a low- compared with high-carbohydrate diet. J. Nutr. 2020, 150, 2009–2015. [Google Scholar] [CrossRef]
- Her, T.K.; Lagakos, W.S.; Brown, M.R.; LeBrasseur, N.K.; Rakshit, K.; Matveyenko, A.V. Dietary carbohydrates modulate metabolic and β-cell adaptation to high-fat diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E856–E865. [Google Scholar] [CrossRef]
- Bistrian, B.R. Some musings about differential energy metabolism with ketogenic diets. JPEN J. Parenter. Enteral. Nutr. 2019, 43, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Ebbeling, C.B. The carbohydrate-insulin model of obesity: Beyond "calories in, calories out". JAMA Intern. Med. 2018, 178, 1098–1103. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; de Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef]
- Hall, K.D.; Chen, K.Y.; Guo, J.; Lam, Y.Y.; Leibel, R.L.; Mayer, L.E.; Reitman, M.L.; Rosenbaum, M.; Smith, S.R.; Walsh, B.T.; et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016, 104, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.I.; Appel, S. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men: A secondary analysis of energy expenditure and physical activity. PLoS ONE 2019, 14, e0222971. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D. Mystery or method? Evaluating claims of increased energy expenditure during a ketogenic diet. PLoS ONE 2019, 14, e0225944. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Feldman, H.A.; Klein, G.L.; Wong, J.M.W.; Bielak, L.; Steltz, S.K.; Luoto, P.K.; Wolfe, R.R.; Wong, W.W.; Ludwig, D.S. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: Randomized trial. BMJ 2018, 363, k4583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, K.D.; Guo, J.; Speakman, J.R. Do low-carbohydrate diets increase energy expenditure? Int J. Obes 2019, 43, 2350–2354. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.S.; Greco, K.F.; Ma, C.; Ebbeling, C.B. Testing the carbohydrate-insulin model of obesity in a 5-month feeding study: The perils of post-hoc participant exclusions. Eur J. Clin. Nutr. 2020, 74, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Dickinson, S.L.; Henschel, B.; Ebbeling, C.B.; Allison, D.B. Do lower-carbohydrate diets increase total energy expenditure? An updated and reanalyzed meta-analysis of 29 controlled-feeding studies. J. Nutr. 2021, 151, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Guyenet, S.J.; Hall, K.D. Overestimated impact of lower-carbohydrate diets on total energy expenditure. J. Nutr. 2021, 151, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O’Rahilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The energy balance model of obesity: Beyond calories in, calories out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef]
- Cahill, G.F., Jr. Starvation in man. N Engl. J. Med. 1970, 282, 668–675. [Google Scholar] [CrossRef]
- Jefferson, L.S.; Rannels, D.E.; Munger, B.L.; Morgan, H.E. Insulin in the regulation of protein turnover in heart and skeletal muscle. Fed Proc. 1974, 33, 1098–1104. [Google Scholar]
- Bradley, D.C.; Bergman, R.N. Hepatic glucagon sensitivity and fasting glucose concentration in normal dogs. Am. J. Physiol. 1992, 262, E539–E545. [Google Scholar] [CrossRef]
- Kraft, G.; Coate, K.C.; Winnick, J.J.; Dardevet, D.; Donahue, E.P.; Cherrington, A.D.; Williams, P.E.; Moore, M.C. Glucagon’s effect on liver protein metabolism in vivo. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E263–E272. [Google Scholar] [CrossRef]
- Cherrington, A.D.; Chiasson, J.L.; Liljenquist, J.E.; Jennings, A.S.; Keller, U.; Lacy, W.W. The role of insulin and glucagon in the regulation of basal glucose production in the postabsorptive dog. J. Clin. Investig. 1976, 58, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.C.; Cummins, K.A.; Hayek, M.G.; Davenport, G.M. Effects of dietary protein on whole-body protein turnover and endocrine function in young-adult and aging dogs. J. Anim Sci. 2001, 79, 3128–3136. [Google Scholar] [CrossRef]
- European Pet Food Industry. Nutritional Guidelines: For Complete and Complementary Pet Food for Cats and Dogs. Available online: https://fediaf.org/self-regulation/nutrition.html (accessed on 9 March 2022).
- Association of American Feed Control Officials. AAFCO Methods for Substantiating Nutritional Adequacy of Dog and Cat Foods: Proposed Revisions Edited per Comments for 2014 Official Publication. Available online: https://www.aafco.org/Portals/0/SiteContent/Regulatory/Committees/Pet-Food/Reports/Pet_Food_Report_2013_Midyear-Proposed_Revisions_to_AAFCO_Nutrient_Profiles.pdf (accessed on 9 March 2022).
- National Research Council; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Animal Nutrition; Subcommittee on Dog and Cat Nutrition. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Sakuma, K.; Ohyama, T.; Sogawa, K.; Fujii-Kuriyama, Y.; Matsumura, Y. Low protein--high energy diet induces repressed transcription of albumin mRNA in rat liver. J. Nutr. 1987, 117, 1141–1148. [Google Scholar] [CrossRef]
- James, W.P.; Hay, A.M. Albumin metabolism: Effect of the nutritional state and the dietary protein intake. J. Clin. Investig. 1968, 47, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Dahn, M.S.; Hsu, C.J.; Lange, M.P.; Kimball, S.R.; Jefferson, L.S. Factors affecting secretory protein production in primary cultures of rat hepatocytes. Proc. Soc. Exp. Biol. Med. 1993, 203, 38–44. [Google Scholar] [CrossRef]
- Chong, M.F.; Hodson, L.; Bickerton, A.S.; Roberts, R.; Neville, M.; Karpe, F.; Frayn, K.N.; Fielding, B.A. Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am. J. Clin. Nutr. 2008, 87, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Reshef, L.; Olswang, Y.; Cassuto, H.; Blum, B.; Croniger, C.M.; Kalhan, S.C.; Tilghman, S.M.; Hanson, R.W. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 2003, 278, 30413–30416. [Google Scholar] [CrossRef] [Green Version]
- Bertolucci, C.; Fazio, F.; Piccione, G. Daily rhythms of serum lipids in dogs: Influences of lighting and fasting cycles. Comp. Med. 2008, 58, 485–489. [Google Scholar]
- Basso, L.V.; Havel, R.J. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J. Clin. Investig. 1970, 49, 537–547. [Google Scholar] [CrossRef]
- Shimy, K.J.; Feldman, H.A.; Klein, G.L.; Bielak, L.; Ebbeling, C.B.; Ludwig, D.S. Effects of dietary carbohydrate content on circulating metabolic fuel availability in the postprandial state. J. Endocr. Soc. 2020, 4, bvaa062. [Google Scholar] [CrossRef]
- Owen, O.E.; Reichard, G.A., Jr.; Patel, M.S.; Boden, G. Energy metabolism in feasting and fasting. Adv. Exp. Med. Biol. 1979, 111, 169–188. [Google Scholar] [CrossRef]
- Norwitz, N.G.; Feldman, D.; Soto-Mota, A.; Kalayjian, T.; Ludwig, D.S. Elevated LDL cholesterol with a carbohydrate-restricted diet: Evidence for a "lean mass hyper-responder" phenotype. Curr. Dev. Nutr. 2022, 6, nzab144. [Google Scholar] [CrossRef]
- Fernández-Rojo, M.A.; Restall, C.; Ferguson, C.; Martel, N.; Martin, S.; Bosch, M.; Kassan, A.; Leong, G.M.; Martin, S.D.; McGee, S.L.; et al. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology 2012, 55, 1574–1584. [Google Scholar] [CrossRef]
- Fernández-Rojo, M.A.; Gongora, M.; Fitzsimmons, R.L.; Martel, N.; Martin, S.D.; Nixon, S.J.; Brooks, A.J.; Ikonomopoulou, M.P.; Martin, S.; Lo, H.P.; et al. Caveolin-1 is necessary for hepatic oxidative lipid metabolism: Evidence for crosstalk between caveolin-1 and bile acid signaling. Cell Rep. 2013, 4, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Ruiz de Azua, I.; Lutz, B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol. Life Sci. 2019, 76, 1341–1363. [Google Scholar] [CrossRef]
- Bellocchio, L.; Cervino, C.; Pasquali, R.; Pagotto, U. The endocannabinoid system and energy metabolism. J. Neuroendocrinol 2008, 20, 850–857. [Google Scholar] [CrossRef]
- Borowska, M.; Czarnywojtek, A.; Sawicka-Gutaj, N.; Woliński, K.; Płazińska, M.T.; Mikołajczak, P.; Ruchała, M. The effects of cannabinoids on the endocrine system. Endokrynol. Pol. 2018, 69, 705–719. [Google Scholar] [CrossRef] [Green Version]
- Silver, R.J. The endocannabinoid system of animals. Animals 2019, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Raichlen, D.A.; Foster, A.D.; Gerdeman, G.L.; Seillier, A.; Giuffrida, A. Wired to run: Exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ’runner’s high’. J. Exp. Biol. 2012, 215, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.P. Mechanisms underlying restoration of hepatic insulin sensitivity with CB1 antagonism in the obese dog model. Adipocyte 2013, 2, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Li, C.; He, J.; Li, S.; Bazzano, L.A.; Kinchen, J.M.; Chen, W.; He, H.; Gu, D.; Kelly, T.N. Serum metabolites associate with lipid phenotypes among Bogalusa Heart Study participants. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 777–787. [Google Scholar] [CrossRef]
- Kim, S.P.; Woolcott, O.O.; Hsu, I.R.; Stefanoski, D.; Harrison, L.N.; Zheng, D.; Lottati, M.; Kolka, C.; Catalano, K.J.; Chiu, J.D.; et al. CB(1) antagonism restores hepatic insulin sensitivity without normalization of adiposity in diet-induced obese dogs. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1261–E1268. [Google Scholar] [CrossRef]
- Grant, R.W.; Vester Boler, B.M.; Ridge, T.K.; Graves, T.K.; Swanson, K.S. Skeletal muscle tissue transcriptome differences in lean and obese female beagle dogs. Anim Genet. 2013, 44, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Febo, E.; Crisi, P.E.; Oddi, S.; Pietra, M.; Galiazzo, G.; Piscitelli, F.; Gramenzi, A.; Prinzio, R.D.; Di Tommaso, M.; Bernabò, N.; et al. Circulating endocannabinoids as diagnostic markers of canine chronic enteropathies: A pilot study. Front. Vet. Sci. 2021, 8, 655311. [Google Scholar] [CrossRef] [PubMed]
- Valastro, C.; Campanile, D.; Marinaro, M.; Franchini, D.; Piscitelli, F.; Verde, R.; Di Marzo, V.; Di Bello, A. Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: A pilot study. BMC Vet. Res. 2017, 13, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, J.A.; Carvalho, F.; Pearson, M.; Horton, J.D.; Browning, J.D.; Jones, J.G.; Burgess, S.C. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J. Lipid Res. 2014, 55, 2541–2553. [Google Scholar] [CrossRef] [Green Version]
- Harding, S.V.; Bateman, K.P.; Kennedy, B.P.; Rideout, T.C.; Jones, P.J. Desaturation index versus isotopically measured de novo lipogenesis as an indicator of acute systemic lipogenesis. BMC Res. Notes 2015, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Warensjö, E.; Sundström, J.; Vessby, B.; Cederholm, T.; Risérus, U. Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: A population-based prospective study. Am. J. Clin. Nutr. 2008, 88, 203–209. [Google Scholar] [CrossRef]
- Huang, X.; Stenvinkel, P.; Qureshi, A.R.; Cederholm, T.; Bárány, P.; Heimbürger, O.; Lindholm, B.; Risérus, U.; Carrero, J.J. Clinical determinants and mortality predictability of stearoyl-CoA desaturase-1 activity indices in dialysis patients. J. Intern. Med. 2013, 273, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Bjermo, H.; Risérus, U. Role of hepatic desaturases in obesity-related metabolic disorders. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 703–708. [Google Scholar] [CrossRef]
- Kröger, J.; Schulze, M.B. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Curr. Opin Lipidol 2012, 23, 4–10. [Google Scholar] [CrossRef]
- Lai, K.K.Y.; Kweon, S.M.; Chi, F.; Hwang, E.; Kabe, Y.; Higashiyama, R.; Qin, L.; Yan, R.; Wu, R.P.; Lai, K.; et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 2017, 152, 1477–1491. [Google Scholar] [CrossRef] [Green Version]
- Samad, A.; James, A.; Wong, J.; Mankad, P.; Whitehouse, J.; Patel, W.; Alves-Simoes, M.; Siriwardena, A.K.; Bruce, J.I. Insulin protects pancreatic acinar cells from palmitoleic acid-induced cellular injury. J. Biol. Chem. 2014, 289, 23582–23595. [Google Scholar] [CrossRef] [Green Version]
- Morgan, N.G.; Dhayal, S.; Diakogiannaki, E.; Welters, H.J. The cytoprotective actions of long-chain mono-unsaturated fatty acids in pancreatic beta-cells. BioChem. Soc. Trans. 2008, 36, 905–908. [Google Scholar] [CrossRef]
- Luis, G.; Godfroid, A.; Nishiumi, S.; Cimino, J.; Blacher, S.; Maquoi, E.; Wery, C.; Collignon, A.; Longuespée, R.; Montero-Ruiz, L.; et al. Tumor resistance to ferroptosis driven by stearoyl-coa desaturase-1 (SCD1) in cancer cells and fatty acid biding protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021, 43, 102006. [Google Scholar] [CrossRef]
- Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers 2019, 11, 948. [Google Scholar] [CrossRef] [Green Version]
- Holder, A.M.; Gonzalez-Angulo, A.M.; Chen, H.; Akcakanat, A.; Do, K.A.; Fraser Symmans, W.; Pusztai, L.; Hortobagyi, G.N.; Mills, G.B.; Meric-Bernstam, F. High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res. Treat. 2013, 137, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, Y.; Zhu, L.; Zou, Y.; Kong, W.; Dong, B.; Huang, J.; Chen, Y.; Xue, W.; Huang, Y.; et al. High expression of stearoyl-CoA desaturase 1 predicts poor prognosis in patients with clear-cell renal cell carcinoma. PLoS ONE 2016, 11, e0166231. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.L.P.; Mattingly, S.; Schirrmacher, R.; Sawyer, M.B.; Fine, E.J.; Prado, C.M. A nutritional perspective of ketogenic diet in cancer: A narrative review. J. Acad Nutr. Diet. 2018, 118, 668–688. [Google Scholar] [CrossRef]
- Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer—Where do we stand? Mol. Metab. 2020, 33, 102–121. [Google Scholar] [CrossRef]
- Lien, E.C.; Westermark, A.M.; Zhang, Y.; Yuan, C.; Li, Z.; Lau, A.N.; Sapp, K.M.; Wolpin, B.M.; Vander Heiden, M.G. Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature 2021, 599, 302–307. [Google Scholar] [CrossRef]
- Mason, P.; Liang, B.; Li, L.; Fremgen, T.; Murphy, E.; Quinn, A.; Madden, S.L.; Biemann, H.P.; Wang, B.; Cohen, A.; et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS ONE 2012, 7, e33823. [Google Scholar] [CrossRef] [Green Version]
- Pang, L.; Shah, H.; Xu, Y.; Qian, S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl. Oncol. 2021, 14, 101207. [Google Scholar] [CrossRef]
- Xiang, M.; Rahman, M.A.; Ai, H.; Li, X.; Harbige, L.S. Diet and gene expression: Delta-5 and delta-6 desaturases in healthy Chinese and European subjects. Ann. Nutr. Metab. 2006, 50, 492–498. [Google Scholar] [CrossRef]
- Girón, M.D.; Mataix, F.J.; Faus, M.J.; Suárez, M.D. Effect of long-term feeding olive and sunflower oils on fatty acid composition and desaturation activities of liver microsomes. BioChem. Int. 1989, 19, 645–656. [Google Scholar]
- Davidson, E.A.; Pickens, C.A.; Fenton, J.I. Increasing dietary EPA and DHA influence estimated fatty acid desaturase activity in systemic organs which is reflected in the red blood cell in mice. Int. J. Food Sci. Nutr. 2018, 69, 183–191. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Methods. Available online: http://www.aoacofficialmethod.org/ (accessed on 9 March 2022).
- Ichihara, K.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Wilder, R.M.; Winter, M.D. The threshold of ketogenesis. J. Biol. Chem. 1922, 52, 393–401. [Google Scholar] [CrossRef]
- Floerchinger, A.M.; Jackson, M.I.; Jewell, D.E.; MacLeay, J.M.; Paetau-Robinson, I.; Hahn, K.A. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in dogs. J. Am. Vet. Med. Assoc. 2015, 247, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.I.; Jewell, D.E. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes 2019, 10, 298–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride—methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed ed.; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
Food Component | HiCHO | PROT_LoCHO | FAT_LoCHO |
---|---|---|---|
Ketogenic ratio | 0.46 | 0.97 | 1.63 |
Metabolizable energy | 3353.70 | 3260.95 | 4062.45 |
Carbohydrate, % kcal | 38.20 | 7.66 | 4.80 |
Protein, % kcal | 24.72 | 52.92 | 26.66 |
Fat, % kcal | 37.08 | 39.41 | 68.54 |
Starch | 35.50 | 6.40 | 4.60 |
Sugars | 1.10 | 0.74 | 0.97 |
Carbohydrate | 36.60 | 7.14 | 5.57 |
Protein | 23.69 | 49.31 | 30.94 |
Fat | 14.63 | 15.12 | 32.76 |
Total dietary fiber | 10.60 | 13.60 | 14.20 |
Insoluble fiber | 8.50 | 12.90 | 12.50 |
Soluble fiber | 2.10 | 0.70 | 1.70 |
SFA | 3.60 | 4.19 | 13.25 |
MUFA | 5.17 | 5.59 | 10.32 |
n3 PUFA | 0.45 | 0.57 | 1.77 |
n6 PUFA | 3.61 | 3.08 | 4.35 |
n6/n3 Ratio | 8.02 | 5.40 | 2.46 |
C8:0 | <0.02 | <0.02 | 3.07 |
C10:0 | <0.02 | <0.02 | 2.93 |
C12:0 | <0.02 | <0.02 | 0.03 |
C14:0 | 0.06 | 0.07 | 0.20 |
C16:0 | 2.76 | 3.00 | 5.33 |
C16:1 | 0.59 | 0.67 | 1.28 |
C18:0 | 0.70 | 1.01 | 1.57 |
C18:1 | 4.48 | 4.81 | 8.84 |
C18:2n6 | 3.50 | 2.80 | 3.97 |
C18:3n6 | <0.02 | 0.03 | 0.05 |
C18:3n3 | 0.43 | 0.52 | 1.36 |
C20:3n6 | <0.02 | 0.03 | 0.05 |
C20:4n6 (ARA) | 0.05 | 0.16 | 0.19 |
C20:5n3 (EPA) | <0.02 | <0.02 | 0.18 |
C22:6n3 (DHA) | <0.02 | <0.02 | 0.14 |
Nutrient Intake | HiCHO | PROT_LoCHO | FAT_LoCHO | Mixed Model p |
---|---|---|---|---|
Metabolizable energy | 94.08 ± 2.92 b | 106.20 ± 3.08 a | 104.52 ± 3.42 a | 0.0004 |
Starch | 9.96 ± 0.31 a | 2.09 ± 0.06 b | 1.19 ± 0.04 c | <0.0001 |
Sugars | 0.31 ± 0.01 a | 0.24 ± 0.01 b | 0.25 ± 0.01 b | <0.0001 |
Carbohydrate | 10.27 ± 0.32 a | 2.32 ± 0.07 b | 1.44 ± 0.05 c | <0.0001 |
Protein crude | 6.65 ± 0.21 c | 16.08 ± 0.47 a | 7.99 ± 0.26 b | <0.0001 |
Fat crude | 4.11 ± 0.13 c | 4.93 ± 0.14 b | 8.46 ± 0.28 a | <0.0001 |
Total dietary fiber | 2.97 ± 0.09 c | 4.43 ± 0.13 a | 3.67 ± 0.12 b | <0.0001 |
Insoluble fiber | 2.39 ± 0.07 c | 4.21 ± 0.12 a | 3.23 ± 0.11 b | <0.0001 |
Soluble fiber | 0.59 ± 0.02 a | 0.23 ± 0.01 c | 0.44 ± 0.01 b | <0.0001 |
MUFA | 1.45 ± 0.05 c | 1.82 ± 0.05 b | 2.66 ± 0.09 a | <0.0001 |
n3 PUFA | 0.13 ± 0.00 c | 0.19 ± 0.01 b | 0.46 ± 0.01 a | <0.0001 |
n6 PUFA | 1.01 ± 0.03 b | 1.00 ± 0.03 b | 1.12 ± 0.04 a | 0.0006 |
C8:0 | <0.006 | <0.007 | 0.79 ± 0.03 | NA |
C10:0 | <0.006 | <0.007 | 0.76 ± 0.02 | NA |
C12:0 | <0.006 | <0.007 | 0.01 ± 0.00 | NA |
C14:0 | 0.02 ± 0.00 c | 0.02 ± 0.00 b | 0.05 ± 0.00 a | <0.0001 |
C16:0 | 0.77 ± 0.02 c | 0.98 ± 0.03 b | 1.38 ± 0.05 a | <0.0001 |
C16:1 | 0.17 ± 0.01 c | 0.22 ± 0.01 b | 0.33 ± 0.01 a | <0.0001 |
C18:0 | 0.20 ± 0.01 c | 0.33 ± 0.01 b | 0.41 ± 0.01 a | <0.0001 |
C18:1 | 1.26 ± 0.04 c | 1.57 ± 0.05 b | 2.28 ± 0.08 a | <0.0001 |
C18:2n6 | 0.98 ± 0.03 a,b | 0.91 ± 0.03 b | 1.03 ± 0.03 a | 0.0015 |
C18:3n6 | <0.006 | <0.010 | 0.01 ± 0.00 | NA |
C18:3n3 | 0.12 ± 0.00 c | 0.17 ± 0.01 b | 0.35 ± 0.01 a | <0.0001 |
C20:3n6 | < 0.006 | <0.010 | 0.01 ± 0.00 | NA |
C20:4n6 (ARA) | 0.01 ± 0.00 b | 0.05 ± 0.00 a | 0.05 ± 0.00 a | <0.0001 |
C20:5n3 (EPA) | <0.006 | <0.007 | 0.05 ± 0.00 | NA |
C22:6n3 (DHA) | <0.006 | <0.007 | 0.04 ± 0.00 | NA |
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | Mixed Model p |
---|---|---|---|---|
Albumin (g/dL) | 3.44 ± 0.05 c | 3.62 ± 0.04 a | 3.52 ± 0.05 b | <0.0001 |
BUN (mg/dL) | 11.71 ± 0.40 b | 18.26 ± 0.65 a | 12.49 ± 0.49 b | <0.0001 |
Creatinine (mg/dL) | 0.65 ± 0.02 b | 0.69 ± 0.02 a | 0.67 ± 0.02 a,b | 0.004 |
Bilirubin, total (mg/dL) | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.007 | 0.146 |
Glucose (mM) | 5.27 ± 0.07 | 5.22 ± 0.09 | 5.23 ± 0.10 | 0.838 |
β-hydroxybutyrate (uM) | 93.59 ± 2.96 b | 101.27 ± 6.24 b | 143.81 ± 13.79 a | <0.0001 |
Triglycerides (mM) | 0.62 ± 0.03 a | 0.43 ± 0.02 b | 0.43 ± 0.01 b | <0.0001 |
Cholesterol (mM) | 4.83 ± 0.18 c | 5.55 ± 0.20 b | 6.37 ± 0.20 a | <0.0001 |
Lipemic index (mg/dL) | 5.00 ± 0.31 | 4.91 ± 0.36 | 4.69 ± 0.27 | 0.758 |
Type | Amino Acid | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|---|
Catabolite | urea | ||||
Ketogenic Only | leucine | ||||
lysine | |||||
Ketogenic and Glucogenic | isoleucine | ||||
phenylalanine | |||||
threonine | |||||
tryptophan | |||||
tyrosine | |||||
Glucogenic Only | alanine | ||||
arginine | |||||
asparagine | |||||
aspartate | |||||
cysteine | |||||
cystine | |||||
glutamate | |||||
glutamine | |||||
glycine | |||||
histidine | |||||
methionine | |||||
proline | |||||
serine | |||||
valine | |||||
Other | taurine |
Kynurenine Pathway Metabolites | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|
kynurenate | ||||
kynurenine | ||||
N-acetylkynurenine | ||||
N-formylkynurenine | ||||
anthranilate | ||||
N-formylanthranilic acid | ||||
quinolinate | ||||
picolinate | ||||
1-methylnicotinamide | ||||
nicotinamide | ||||
nicotinamide riboside | ||||
N′-methylnicotinate |
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | Mixed Model p |
---|---|---|---|---|
C12:0 | 6.20 ± 0.52 a | 2.36 ± 0.53 b | 3.60 ± 0.58 b | <0.0001 |
C14:0 | 22.50 ± 1.06 a | 16.83 ± 1.04 b | 14.31 ± 0.75 c | <0.0001 |
C16:0 | 1336.32 ± 30.34 b | 1493.36 ± 33.71 a | 1398.01 ± 27.66 b | <0.0001 |
C16:1 | 99.91 ± 4.20 a | 94.65 ± 4.22 a | 78.56 ± 2.97 b | <0.0001 |
C18:0 | 2255.08 ± 71.00 c | 2435.94 ± 65.71 b | 2975.93 ± 75.71 a | <0.0001 |
C18:1 | 843.22 ± 22.63 a | 813.09 ± 24.28 a,b | 795.71 ± 20.19 b | 0.0509 |
C18:2n6 | 1763.02 ± 44.48 a | 1554.49 ± 35.22 c | 1634.83 ± 36.17 b | <0.0001 |
C18:3n3 | 53.36 ± 1.56 b | 65.94 ± 2.24 a | 69.09 ± 2.59 a | <0.0001 |
C18:3n6 | 6.67 ± 0.24 a | 6.23 ± 0.26 a | 4.60 ± 0.26 b | <0.0001 |
C20:2n6 | 23.45 ± 1.08 a | 18.92 ± 0.72 b | 18.08 ± 0.80 b | <0.0001 |
C20:3n6 | 103.25 ± 6.54 b | 105.98 ± 6.00 b | 155.01 ± 6.38 a | <0.0001 |
C20:4n6 (ARA) | 1769.17 ± 59.31 b | 2199.47 ± 59.25 a | 2146.05 ± 64.18 a | <0.0001 |
C20:5n3 (EPA) | 23.31 ± 1.13 b | 35.65 ± 1.23 b | 164.29 ± 6.84 a | <0.0001 |
C22:4n6 | 78.60 ± 3.23 b | 119.88 ± 3.76 a | 43.36 ± 1.32 c | <0.0001 |
C22:5n3 | 220.93 ± 9.30 b | 196.78 ± 8.50 c | 254.16 ± 8.70 a | <0.0001 |
C22:6n3 (DHA) | 100.08 ± 5.62 b | 89.43 ± 3.95 b | 258.80 ± 8.67 a | <0.0001 |
Total FA (mM) | 8.71 ± 0.23 c | 9.25 ± 0.21 b | 10.0 ± 0.22 a | <0.0001 |
n6/n3 (mol ratio) | 9.63 ± 0.25 b | 10.43 ± 0.19 a | 5.40 ± 0.12 c | <0.0001 |
SFA/UFA (mol ratio) | 0.71 ± 0.01 c | 0.74 ± 0.01 b | 0.78 ± 0.01 a | <0.0001 |
Total MUFA (mol %) | 10.92 ± 0.27 a | 9.85 ± 0.27 b | 8.76 ± 0.17 c | <0.0001 |
Total n3 (mol %) | 4.55 ± 0.11 b | 4.20 ± 0.08 c | 7.48 ± 0.12 a | <0.0001 |
Total n6 (mol %) | 42.98 ± 0.18 a | 43.29 ± 0.14 a | 39.91 ± 0.21 b | <0.0001 |
Total PUFA (mol %) | 47.53 ± 0.18 | 47.49 ± 0.15 | 47.39 ± 0.12 | 0.7432 |
Total SFA (mol %) | 41.55 ± 0.17 c | 42.66 ± 0.18 b | 43.85 ± 0.16 a | <0.0001 |
Total UFA (mol %) | 58.45 ± 0.17 a | 57.34 ± 0.18 b | 56.15 ± 0.16 c | <0.0001 |
Fatty Acid Ratios | HiCHO | PROT_LoCHO | FAT_LoCHO | Mixed Model p |
---|---|---|---|---|
SCD1 (Δ9) (16:1/16:0) | 0.08 ± 0.00 a | 0.06 ± 0.00 b | 0.06 ± 0.00 c | <0.0001 |
SCD1 (Δ9) (18:1/18:0) | 0.38 ± 0.01 a | 0.34 ± 0.01 b | 0.27 ± 0.01 c | <0.0001 |
Δ6 desaturase (18:3n6/18:2n6) | 0.004 ± 0.00 a | 0.004 ± 0.00 a | 0.003 ± 0.00 b | <0.0001 |
Δ5 desaturase (20:4n6/20:3n6) | 18.92 ± 1.10 b | 22.02 ± 0.87 a | 14.29 ± 0.51 c | <0.0001 |
Elongase Elovl-6 (18:0/16:0) | 1.68 ± 0.03 b | 1.63 ± 0.03 b | 2.13 ± 0.03 a | <0.0001 |
Elongase Elovl-5 (20:3n6/18:3n6) | 16.37 ± 1.34 b | 18.06 ± 1.21 b | 37.18 ± 2.57 a | <0.0001 |
Overall Elongation ((18:0 + 18:1)/16:0) | 2.32 ± 0.03 b | 2.18 ± 0.02 c | 2.70 ± 0.03 a | <0.0001 |
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | Mixed Model p |
---|---|---|---|---|
Apparent Circulating Energy 1 | 24.99 ± 0.56 c | 26.29 ± 0.52 b | 28.12 ± 0.53 a | <0.0001 |
Glucose (% of energy) | 15.41 ± 0.37 a | 14.48 ± 0.32 b | 13.57 ± 0.36 c | <0.0001 |
βHB (% of energy) | 0.17 ± 0.01 b | 0.17 ± 0.01 b | 0.23 ± 0.02 a | 0.0035 |
Triglycerides (% of energy) | 20.06 ± 1.15 a | 13.12 ± 0.45 b | 12.26 ± 0.35 b | <0.0001 |
Adjusted Fatty Acids 2 (% of energy) | 64.36 ± 1.29 b | 72.22 ± 0.60 a | 73.94 ± 0.52 a | <0.0001 |
Type | Fatty Acid | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|---|
β-hydroxy fatty acid | 3-hydroxybutyrate (BHB) | ||||
3-hydroxyhexanoate | |||||
3-hydroxyadipate | |||||
3-hydroxyoctanoate | |||||
3-hydroxydecanoate | |||||
3-hydroxysebacate | |||||
3-hydroxyundecanedioate | |||||
3-hydroxydodecanedioate | |||||
3-hydroxylaurate | |||||
3-hydroxymyristate | |||||
3-hydroxystearate | |||||
ω-carboxy fatty acid | oxalate (ethanedioate) | ||||
glutarate (C5-DC) | |||||
pimelate (C7-DC) | |||||
heptenedioate (C7:1-DC) | |||||
suberate (C8-DC) | |||||
azelate (C9-DC) | |||||
sebacate (C10-DC) | |||||
undecanedioate (C11-DC) | |||||
tridecenedioate (C13:1-DC) | |||||
tetradecanedioate (C14) | |||||
hexadecanedioate (C16) | |||||
hromatographye (C16:1-DC) | |||||
heptadecanedioate (C17-DC) | |||||
octadecanedioate (C18) | |||||
octadecenedioate (C18:1-DC) | |||||
octadecadienedioate (C18:2-DC) | |||||
nonadecanedioate (C19-DC) | |||||
eicosanedioate (C20-DC) | |||||
eicosenedioate (C20:1-DC) |
Type | Carnitine | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|---|
Carnitine | carnitine | ||||
deoxycarnitine | |||||
Acylcarnitine | acetylcarnitine (C2) | ||||
propionylcarnitine (C3) | |||||
malonylcarnitine | |||||
butyrylcarnitine (C4) | |||||
butenoylcarnitine (C4:1) | |||||
(S)-3-hydroxybutyrylcarnitine | |||||
I-3-hydroxybutyrylcarnitine | |||||
succinylcarnitine (C4-DC) | |||||
glutarylcarnitine (C5-DC) | |||||
hexanoylcarnitine (C6) | |||||
adipoylcarnitine (C6-DC) | |||||
cis-3,4-methyleneheptanoylcarnitine | |||||
octanoylcarnitine (C8) | |||||
3-hydroxyoctanoylcarnitine | |||||
suberoylcarnitine (C8-DC) | |||||
decanoylcarnitine (C10) | |||||
cis-4-decenoylcarnitine (C10:1) | |||||
3-hydroxydecanoylcarnitine | |||||
undecenoylcarnitine (C11:1) | |||||
laurylcarnitine (C12) | |||||
5-dodecenoylcarnitine (C12:1) | |||||
myristoleoylcarnitine (C14:1) | |||||
myristoylcarnitine (C14) | |||||
pentadecanoylcarnitine (C15) | |||||
palmitoylcarnitine (C16) | |||||
palmitoleoylcarnitine (C16:1) | |||||
3-hydroxypalmitoylcarnitine | |||||
margaroylcarnitine (C17) | |||||
stearoylcarnitine (C18) | |||||
octadecanedioylcarnitine (C18-DC) | |||||
oleoylcarnitine (C18:1) | |||||
3-hydroxyoleoylcarnitine | |||||
linoleoylcarnitine (C18:2) | |||||
linolenoylcarnitine (C18:3) | |||||
eicosenoylcarnitine (C20:1) | |||||
dihomo-linoleoylcarnitine (C20:2) | |||||
dihomo-linolenoylcarnitine (C20:3n3 or 6) | |||||
arachidoylcarnitine (C20) | |||||
arachidonoylcarnitine (C20:4) | |||||
behenoylcarnitine (C22) | |||||
erucoylcarnitine (C22:1) | |||||
docosapentaenoylcarnitine (C22:5n3) | |||||
docosahexaenoylcarnitine (C22:6) | |||||
lignoceroylcarnitine (C24) | |||||
nervonoylcarnitine (C24:1) | |||||
ximenoylcarnitine (C26:1) | |||||
cerotoylcarnitine (C26) |
Type | Choline-Containing Phospholipid | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|---|
Precursor/ Catabolite | choline | ||||
glycerophosphorylcholine (GPC) | |||||
Lysolipid (LysC) | 1-palmitoyl-GPC (16:0) | ||||
1-palmitoleoyl-GPC (16:1) | |||||
1-stearoyl-GPC (18:0) | |||||
1-oleoyl-GPC (18:1) | |||||
1-linoleoyl-GPC (18:2) | |||||
1-linolenoyl-GPC (18:3) | |||||
1-arachidonoyl-GPC (20:4) | |||||
1-lignoceroyl-GPC (24:0) | |||||
1-cerotoyl-GPC (26:0) | |||||
1-(1-enyl-palmitoyl)-GPC (P-16:0) | |||||
Phospholipid (PtdC) | 1-myristoyl-2-palmitoyl-GPC (14:0/16:0) | ||||
1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) | |||||
1,2-dipalmitoyl-GPC (16:0/16:0) | |||||
1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) | |||||
1-palmitoyl-2-stearoyl-GPC (16:0/18:0) | |||||
1-palmitoyl-2-oleoyl-GPC (16:0/18:1) | |||||
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) | |||||
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) | |||||
1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) | |||||
1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) | |||||
1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) | |||||
1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) | |||||
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) | |||||
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) | |||||
1-palmitoleoyl-2-linoleoyl-GPC (16:1/18:2) | |||||
1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3) | |||||
1-stearoyl-2-oleoyl-GPC (18:0/18:1) | |||||
1-stearoyl-2-linoleoyl-GPC (18:0/18:2) | |||||
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) | |||||
1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) | |||||
1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6) | |||||
1,2-dilinoleoyl-GPC (18:2/18:2) | |||||
1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) | |||||
1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) | |||||
1,2-dilinolenoyl-GPC (18:3/18:3) |
Type | Ethanolamine-Containing Phospholipid | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|---|
Precursor/ Catabolite | phosphoethanolamine | ||||
glycerophosphoethanolamine (GPE) | |||||
Lysolipid (LysE) | 1-palmitoyl-GPE (16:0) | ||||
1-stearoyl-GPE (18:0) | |||||
1-oleoyl-GPE (18:1) | |||||
1-linoleoyl-GPE (18:2) | |||||
1-arachidonoyl-GPE (20:4n6) | |||||
1-(1-enyl-palmitoyl)-GPE (P-16:0) | |||||
1-(1-enyl-stearoyl)-GPE (P-18:0) | |||||
1-(1-enyl-oleoyl)-GPE (P-18:1) | |||||
Phospholipid (PtdE) | 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) | ||||
1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) | |||||
1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) | |||||
1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) | |||||
1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) | |||||
1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) | |||||
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) | |||||
1-stearoyl-2-oleoyl-GPE (18:0/18:1) | |||||
1-stearoyl-2-linoleoyl-GPE (18:0/18:2) | |||||
1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) | |||||
1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) | |||||
1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) | |||||
1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) | |||||
1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) | |||||
1-oleoyl-2-arachidonoyl-GPE (18:1/20:4) | |||||
1,2-dilinoleoyl-GPE (18:2/18:2) |
Type | Endocannabinoids and Acyl Neurotransmitters | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Instead of Protein Replacing CHO |
---|---|---|---|---|---|
ethanolamide | palmitoyl ethanolamide | ||||
oleoyl ethanolamide | |||||
acylglycerol | 2-oleoylglycerol | ||||
2-linoleoylglycerol | |||||
2-arachidonoylglycerol | |||||
acylcholine | palmitoylcholine | ||||
margaroylcholine | |||||
stearoylcholine | |||||
oleoylcholine | |||||
linoleoylcholine | |||||
arachidonoylcholine | |||||
eicosapentaenoylcholine | |||||
docosahexaenoylcholine | |||||
acyltaurine | hexanoyltaurine | ||||
N-palmitoyltaurine | |||||
N-stearoyltaurine | |||||
N-oleoyltaurine | |||||
N-linoleoyltaurine | |||||
acylserine | N-stearoylserine | ||||
N-oleoylserine | |||||
acylglycine | N-palmitoylglycine |
Type | Bile Acid | Overall Food Effect | Protein Replaces CHO | Fat Replaces CHO | Fat Rather Than Protein Replacing CHO |
---|---|---|---|---|---|
Primary | beta-muricholate | ||||
cholate | |||||
cholate glucuronide | |||||
tauro-beta-muricholate | |||||
taurocholate | |||||
ursocholate | |||||
Secondary | 12-dehydrocholate | ||||
12-ketolithocholate | |||||
3-dehydrocholate | |||||
7-ketodeoxycholate | |||||
lithocholate | |||||
taurodeoxycholate | |||||
taurohyodeoxycholate | |||||
taurolithocholate | |||||
tauroursodeoxycholate | |||||
ursodeoxycholate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, M.I. Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs. Metabolites 2022, 12, 591. https://doi.org/10.3390/metabo12070591
Jackson MI. Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs. Metabolites. 2022; 12(7):591. https://doi.org/10.3390/metabo12070591
Chicago/Turabian StyleJackson, Matthew Irick. 2022. "Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs" Metabolites 12, no. 7: 591. https://doi.org/10.3390/metabo12070591
APA StyleJackson, M. I. (2022). Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs. Metabolites, 12(7), 591. https://doi.org/10.3390/metabo12070591